具有增强磁链减弱能力的辐条型IPM机床的有限元辅助稳态建模

Nada Elloumi, A. Masmoudi, M. Bortolozzi, A. Tessarolo
{"title":"具有增强磁链减弱能力的辐条型IPM机床的有限元辅助稳态建模","authors":"Nada Elloumi, A. Masmoudi, M. Bortolozzi, A. Tessarolo","doi":"10.1109/EVER.2018.8362393","DOIUrl":null,"url":null,"abstract":"Interior permanent magnet (IPM) machines with spoke-type design are possible candidates for various applications, including vehicle traction. One of their drawback is the high demagnetizing current required in the flux weakening region to let the motor achieve high speeds. This problem can be mitigated by equipping the motor with a mechanical devices consisting of mobile rotor yokes. These move radially by centrifugal force so as to reduce the air-gap flux at high speed with no need for demagnetizing current injection. This paper addresses the problem of modeling such IPM motor to study its steady-state behavior under different operating conditions, both in the full-flux and in the flux-weakening region of the speed range. The approach uses a limited set of non-linear finite element analysis to characterize the dependency of motor flux linkages on the stator currents and rotor position. Interpolating functions are then obtained to mathematically capture this dependency and plug it into the steady-state electromechanical equations of the motor. The effectiveness and accuracy of the method are assessed through on-load measurements taken on the modelled motor both in low and high speed operation.","PeriodicalId":344175,"journal":{"name":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FEA-assisted steady-state modelling of a spoke type IPM machine with enhanced flux weakening capability\",\"authors\":\"Nada Elloumi, A. Masmoudi, M. Bortolozzi, A. Tessarolo\",\"doi\":\"10.1109/EVER.2018.8362393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interior permanent magnet (IPM) machines with spoke-type design are possible candidates for various applications, including vehicle traction. One of their drawback is the high demagnetizing current required in the flux weakening region to let the motor achieve high speeds. This problem can be mitigated by equipping the motor with a mechanical devices consisting of mobile rotor yokes. These move radially by centrifugal force so as to reduce the air-gap flux at high speed with no need for demagnetizing current injection. This paper addresses the problem of modeling such IPM motor to study its steady-state behavior under different operating conditions, both in the full-flux and in the flux-weakening region of the speed range. The approach uses a limited set of non-linear finite element analysis to characterize the dependency of motor flux linkages on the stator currents and rotor position. Interpolating functions are then obtained to mathematically capture this dependency and plug it into the steady-state electromechanical equations of the motor. The effectiveness and accuracy of the method are assessed through on-load measurements taken on the modelled motor both in low and high speed operation.\",\"PeriodicalId\":344175,\"journal\":{\"name\":\"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2018.8362393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2018.8362393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有辐条式设计的内部永磁(IPM)机器可能用于各种应用,包括车辆牵引。它们的缺点之一是在磁通减弱区需要高的退磁电流,以使电机达到高速。这个问题可以通过给电动机配备一个由可移动转子轭组成的机械装置来缓解。它们通过离心力径向运动,从而在高速下减少气隙磁通,而无需退磁电流注入。本文研究了这类永磁电机的建模问题,研究了其在不同工况下的稳态行为,包括转速范围内的全磁通区和磁通减弱区。该方法采用有限的非线性有限元分析来表征电机磁链与定子电流和转子位置的关系。然后获得插值函数以数学方式捕获这种依赖性并将其插入电机的稳态机电方程中。通过对模型电机在低速和高速运行时的有载测量,评估了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FEA-assisted steady-state modelling of a spoke type IPM machine with enhanced flux weakening capability
Interior permanent magnet (IPM) machines with spoke-type design are possible candidates for various applications, including vehicle traction. One of their drawback is the high demagnetizing current required in the flux weakening region to let the motor achieve high speeds. This problem can be mitigated by equipping the motor with a mechanical devices consisting of mobile rotor yokes. These move radially by centrifugal force so as to reduce the air-gap flux at high speed with no need for demagnetizing current injection. This paper addresses the problem of modeling such IPM motor to study its steady-state behavior under different operating conditions, both in the full-flux and in the flux-weakening region of the speed range. The approach uses a limited set of non-linear finite element analysis to characterize the dependency of motor flux linkages on the stator currents and rotor position. Interpolating functions are then obtained to mathematically capture this dependency and plug it into the steady-state electromechanical equations of the motor. The effectiveness and accuracy of the method are assessed through on-load measurements taken on the modelled motor both in low and high speed operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信