E. Saputra, Sukmawati Angreani Putri, Indriyanti Indriyanti
{"title":"基于粒子群优化选择支持向量机的活动日志在线学习成功预测","authors":"E. Saputra, Sukmawati Angreani Putri, Indriyanti Indriyanti","doi":"10.24014/IJAIDM.V2I1.6500","DOIUrl":null,"url":null,"abstract":"Prediction is a systematic estimate that identifies past and future information, we predict the success of learning with elearning based on a log of student activities. In our current study we use the Support vector machine (SVM) method which is comparable with Particle Swarm Optimization. It is known that SVM has a very good generalization that can solve a problem. however, some of the attributes in the data can reduce accuracy and add complexity to the Support Vector Machine (SVM) algorithm. It is necessary for existing tribute selection, therefore using the Particle swarm optimization (PSO) method is applied to the right attribute selection in determining the success of elearning learning based on student activity logs, because with the Swarm Optimization (PSO) method can increase accuracy in determining selection of attributes.","PeriodicalId":385582,"journal":{"name":"Indonesian Journal of Artificial Intelligence and Data Mining","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of Successful Elearning Based on Activity Logs with Selection of Support Vector Machine based on Particle Swarm Optimization\",\"authors\":\"E. Saputra, Sukmawati Angreani Putri, Indriyanti Indriyanti\",\"doi\":\"10.24014/IJAIDM.V2I1.6500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction is a systematic estimate that identifies past and future information, we predict the success of learning with elearning based on a log of student activities. In our current study we use the Support vector machine (SVM) method which is comparable with Particle Swarm Optimization. It is known that SVM has a very good generalization that can solve a problem. however, some of the attributes in the data can reduce accuracy and add complexity to the Support Vector Machine (SVM) algorithm. It is necessary for existing tribute selection, therefore using the Particle swarm optimization (PSO) method is applied to the right attribute selection in determining the success of elearning learning based on student activity logs, because with the Swarm Optimization (PSO) method can increase accuracy in determining selection of attributes.\",\"PeriodicalId\":385582,\"journal\":{\"name\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24014/IJAIDM.V2I1.6500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/IJAIDM.V2I1.6500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Successful Elearning Based on Activity Logs with Selection of Support Vector Machine based on Particle Swarm Optimization
Prediction is a systematic estimate that identifies past and future information, we predict the success of learning with elearning based on a log of student activities. In our current study we use the Support vector machine (SVM) method which is comparable with Particle Swarm Optimization. It is known that SVM has a very good generalization that can solve a problem. however, some of the attributes in the data can reduce accuracy and add complexity to the Support Vector Machine (SVM) algorithm. It is necessary for existing tribute selection, therefore using the Particle swarm optimization (PSO) method is applied to the right attribute selection in determining the success of elearning learning based on student activity logs, because with the Swarm Optimization (PSO) method can increase accuracy in determining selection of attributes.