一种混合KNN-MLP算法诊断双相情感障碍

M. Ghasemi, M. Khalili
{"title":"一种混合KNN-MLP算法诊断双相情感障碍","authors":"M. Ghasemi, M. Khalili","doi":"10.14419/JACST.V4I1.3922","DOIUrl":null,"url":null,"abstract":"In this paper an attempt has been made to the other corner of the power of neural networks. According to the neural network in the diagnosis of diseases, we use neural network models for diagnosing bipolar disorder; bipolar disorder is the common disorder of depression mood. We have used two neural network models: MLP & KNN. With different percentages of the implementation of neural network models is discussed. And the error was calculated for each model. We can by using the MLP model achieve an error of 16% for the diagnosis of bipolar disorder.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hybrid KNN-MLP algorithm to diagnose bipolar disorder\",\"authors\":\"M. Ghasemi, M. Khalili\",\"doi\":\"10.14419/JACST.V4I1.3922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an attempt has been made to the other corner of the power of neural networks. According to the neural network in the diagnosis of diseases, we use neural network models for diagnosing bipolar disorder; bipolar disorder is the common disorder of depression mood. We have used two neural network models: MLP & KNN. With different percentages of the implementation of neural network models is discussed. And the error was calculated for each model. We can by using the MLP model achieve an error of 16% for the diagnosis of bipolar disorder.\",\"PeriodicalId\":445404,\"journal\":{\"name\":\"Journal of Advanced Computer Science and Technology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/JACST.V4I1.3922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V4I1.3922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对神经网络的另一个方面进行了尝试。根据神经网络在疾病诊断中的应用,我们采用神经网络模型对双相情感障碍进行诊断;双相情感障碍是抑郁情绪的常见障碍。我们使用了两种神经网络模型:MLP和KNN。用不同的百分比对神经网络模型的实现进行了讨论。并对每个模型的误差进行了计算。我们可以通过使用MLP模型实现双相情感障碍诊断的误差为16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid KNN-MLP algorithm to diagnose bipolar disorder
In this paper an attempt has been made to the other corner of the power of neural networks. According to the neural network in the diagnosis of diseases, we use neural network models for diagnosing bipolar disorder; bipolar disorder is the common disorder of depression mood. We have used two neural network models: MLP & KNN. With different percentages of the implementation of neural network models is discussed. And the error was calculated for each model. We can by using the MLP model achieve an error of 16% for the diagnosis of bipolar disorder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信