过完备偶阶张量正则多进分解的简化算法(正在进行)

A. Koochakzadeh, P. Pal
{"title":"过完备偶阶张量正则多进分解的简化算法(正在进行)","authors":"A. Koochakzadeh, P. Pal","doi":"10.1109/GlobalSIP.2018.8646691","DOIUrl":null,"url":null,"abstract":"This paper considers canonical polyadic (CP) decomposition of symmetric even order tensors. In earlier work, we showed that decomposition of such tensors is equivalent to solving a system of quadratic equations. As part of ongoing work, we further show that for almost all tensors, singular value decomposition of a certain matrix can uniquely obtain the solution to the system of quadratic equations. Our proposed algorithm is able to find the CP-decomposition, even in the regime where the CP-rank exceeds the dimensions of the tensor (overcomplete tensors).","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Algorithms for Canonical Polyadic Decomposition for Over-Complete Even Order Tensors (Ongoing Work)\",\"authors\":\"A. Koochakzadeh, P. Pal\",\"doi\":\"10.1109/GlobalSIP.2018.8646691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers canonical polyadic (CP) decomposition of symmetric even order tensors. In earlier work, we showed that decomposition of such tensors is equivalent to solving a system of quadratic equations. As part of ongoing work, we further show that for almost all tensors, singular value decomposition of a certain matrix can uniquely obtain the solution to the system of quadratic equations. Our proposed algorithm is able to find the CP-decomposition, even in the regime where the CP-rank exceeds the dimensions of the tensor (overcomplete tensors).\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究对称偶阶张量的正则多进分解。在早期的工作中,我们证明了这种张量的分解等价于求解一个二次方程系统。作为正在进行的工作的一部分,我们进一步证明了对于几乎所有张量,某矩阵的奇异值分解可以唯一地获得二次方程系统的解。我们提出的算法能够找到cp -分解,即使在cp -秩超过张量的维数(过完备张量)的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplified Algorithms for Canonical Polyadic Decomposition for Over-Complete Even Order Tensors (Ongoing Work)
This paper considers canonical polyadic (CP) decomposition of symmetric even order tensors. In earlier work, we showed that decomposition of such tensors is equivalent to solving a system of quadratic equations. As part of ongoing work, we further show that for almost all tensors, singular value decomposition of a certain matrix can uniquely obtain the solution to the system of quadratic equations. Our proposed algorithm is able to find the CP-decomposition, even in the regime where the CP-rank exceeds the dimensions of the tensor (overcomplete tensors).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信