迟滞的神经网络模型

Jyh-Da Wei, Chuen-Tsai Sun
{"title":"迟滞的神经网络模型","authors":"Jyh-Da Wei, Chuen-Tsai Sun","doi":"10.1109/AFSS.1996.583646","DOIUrl":null,"url":null,"abstract":"Hysteresis is an effect of memory, which is frequently observed in the realm of nature. The purpose of this paper is to try to understand more of it, such that we may achieve better performance from the systems which are hysteresis-embedded. A hypothesis-based neural network model is offered in this paper, the synchronous delay network (SDN) model. It can be realized as a feedforward neural network. We also discuss the possible applications in this paper.","PeriodicalId":197019,"journal":{"name":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A neural network model of hysteresis\",\"authors\":\"Jyh-Da Wei, Chuen-Tsai Sun\",\"doi\":\"10.1109/AFSS.1996.583646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hysteresis is an effect of memory, which is frequently observed in the realm of nature. The purpose of this paper is to try to understand more of it, such that we may achieve better performance from the systems which are hysteresis-embedded. A hypothesis-based neural network model is offered in this paper, the synchronous delay network (SDN) model. It can be realized as a feedforward neural network. We also discuss the possible applications in this paper.\",\"PeriodicalId\":197019,\"journal\":{\"name\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFSS.1996.583646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFSS.1996.583646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

迟滞是记忆的一种效应,在自然界中经常观察到。本文的目的是试图更多地了解它,这样我们就可以从嵌入迟滞的系统中获得更好的性能。提出了一种基于假设的神经网络模型——同步延迟网络(SDN)模型。它可以被实现为一个前馈神经网络。本文还讨论了该方法的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network model of hysteresis
Hysteresis is an effect of memory, which is frequently observed in the realm of nature. The purpose of this paper is to try to understand more of it, such that we may achieve better performance from the systems which are hysteresis-embedded. A hypothesis-based neural network model is offered in this paper, the synchronous delay network (SDN) model. It can be realized as a feedforward neural network. We also discuss the possible applications in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信