基于多尺度分层解纠缠的无监督生成图像编辑方法

Jianlong Zhang, Xincheng Yu, Bin Wang, Chen Chen
{"title":"基于多尺度分层解纠缠的无监督生成图像编辑方法","authors":"Jianlong Zhang, Xincheng Yu, Bin Wang, Chen Chen","doi":"10.1109/SmartIoT55134.2022.00038","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of semantic entanglement in generated image latent space of the StyleGAN2 network, we propose an unsupervised generated image editing method based on a multi-scale hierarchical disentanglement network structure. In our method, we first combine the mapping layer with the style mapping layer of each resolution branch in the StyleGAN2 network, and utilize the weight matrix eigen decomposition method at each scale independently to achieve the first-level disentanglement of image attributes and obtain the semantic direction vector of the scale. Then, we use Schmidt orthogonal decomposition based on the adjacent scale eigen vector to achieve the second-level disentanglement of image attributes. The result show that, compared with other mainstream unsupervised image editing methods, our method can achieve precise image editing at multiple scales, and the measurement of disentanglement between each attribute has also reached the best.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Generated Image Editing Method Based on Multi-Scale Hierarchical Disentanglement\",\"authors\":\"Jianlong Zhang, Xincheng Yu, Bin Wang, Chen Chen\",\"doi\":\"10.1109/SmartIoT55134.2022.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of semantic entanglement in generated image latent space of the StyleGAN2 network, we propose an unsupervised generated image editing method based on a multi-scale hierarchical disentanglement network structure. In our method, we first combine the mapping layer with the style mapping layer of each resolution branch in the StyleGAN2 network, and utilize the weight matrix eigen decomposition method at each scale independently to achieve the first-level disentanglement of image attributes and obtain the semantic direction vector of the scale. Then, we use Schmidt orthogonal decomposition based on the adjacent scale eigen vector to achieve the second-level disentanglement of image attributes. The result show that, compared with other mainstream unsupervised image editing methods, our method can achieve precise image editing at multiple scales, and the measurement of disentanglement between each attribute has also reached the best.\",\"PeriodicalId\":422269,\"journal\":{\"name\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT55134.2022.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了解决StyleGAN2网络生成图像潜在空间中的语义纠缠问题,提出了一种基于多尺度分层解纠缠网络结构的无监督生成图像编辑方法。在我们的方法中,我们首先将StyleGAN2网络中每个分辨率分支的映射层与样式映射层结合起来,并在每个尺度上独立利用权矩阵特征分解方法,实现图像属性的第一级解纠缠,获得该尺度的语义方向向量。然后,利用基于相邻尺度特征向量的Schmidt正交分解实现图像属性的二级解纠缠。结果表明,与其他主流的无监督图像编辑方法相比,我们的方法可以实现多尺度的精确图像编辑,并且每个属性之间的解纠缠度量也达到了最好的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Generated Image Editing Method Based on Multi-Scale Hierarchical Disentanglement
In order to solve the problem of semantic entanglement in generated image latent space of the StyleGAN2 network, we propose an unsupervised generated image editing method based on a multi-scale hierarchical disentanglement network structure. In our method, we first combine the mapping layer with the style mapping layer of each resolution branch in the StyleGAN2 network, and utilize the weight matrix eigen decomposition method at each scale independently to achieve the first-level disentanglement of image attributes and obtain the semantic direction vector of the scale. Then, we use Schmidt orthogonal decomposition based on the adjacent scale eigen vector to achieve the second-level disentanglement of image attributes. The result show that, compared with other mainstream unsupervised image editing methods, our method can achieve precise image editing at multiple scales, and the measurement of disentanglement between each attribute has also reached the best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信