三维图像建模的随机方法

D. Joshi, Jia Li, J.Z. Wang
{"title":"三维图像建模的随机方法","authors":"D. Joshi, Jia Li, J.Z. Wang","doi":"10.1109/LSSA.2006.250410","DOIUrl":null,"url":null,"abstract":"Statistical modeling methods have been successfully used to segment, classify, and annotate digital images, over the years. In this paper, we present a 3-D hidden Markov model (HMM) for volume image modeling. The 3-D HMM is applied to volume image segmentation and tested using synthetic images with ground truth. Potential applications to 3-D biomedical image analysis are also discussed","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stochastic Approach to 3-D Image Modeling\",\"authors\":\"D. Joshi, Jia Li, J.Z. Wang\",\"doi\":\"10.1109/LSSA.2006.250410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical modeling methods have been successfully used to segment, classify, and annotate digital images, over the years. In this paper, we present a 3-D hidden Markov model (HMM) for volume image modeling. The 3-D HMM is applied to volume image segmentation and tested using synthetic images with ground truth. Potential applications to 3-D biomedical image analysis are also discussed\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计建模方法已经成功地用于分割,分类和注释数字图像,多年来。本文提出了一种用于体图像建模的三维隐马尔可夫模型(HMM)。将三维隐马尔可夫模型应用于体图像分割,并使用具有地面真值的合成图像进行测试。讨论了三维生物医学图像分析的潜在应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stochastic Approach to 3-D Image Modeling
Statistical modeling methods have been successfully used to segment, classify, and annotate digital images, over the years. In this paper, we present a 3-D hidden Markov model (HMM) for volume image modeling. The 3-D HMM is applied to volume image segmentation and tested using synthetic images with ground truth. Potential applications to 3-D biomedical image analysis are also discussed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信