H. Ryu, Woo-Young Chung, You-Jean Jang, Yong-Jun Lee, Hyung-Seok Jung, C. Oh, Hee-Sung Kang, Young-Wug Kim
{"title":"完全工作1.10 /spl mu/m/sup /嵌入式6T-SRAM技术,具有高k栅极介电器件,适用于超低功耗应用","authors":"H. Ryu, Woo-Young Chung, You-Jean Jang, Yong-Jun Lee, Hyung-Seok Jung, C. Oh, Hee-Sung Kang, Young-Wug Kim","doi":"10.1109/VLSIT.2004.1345380","DOIUrl":null,"url":null,"abstract":"Ultra low power 1.10 /spl mu/m/sup 2/ 6T-SRAM chip with HfO/sub 2/-Al/sub 2/O/sub 3/ gate dielectric was for the first time successfully demonstrated for the system-on-chip applications. By carefully optimizing gate pre-doping process, gate leakage current was dramatically suppressed and poly deletion was reduced. Device performance was improved by 15% and 12% for NFET and PFET, respectively. The threshold voltage of long channel transistor was well controlled to the acceptable value (0.4V) by channel engineering. Equivalent oxide thickness of HfO/sub 2/-Al/sub 2/O/sub 3/ film was 17/spl Aring/ and gate leakage current density was 1600-times lower than that of the oxynitride. Current performance of 90nm gate length NFET and PFET with HfO/sub 2/-Al/sub 2/O/sub 3/ were 335 and 115 /spl mu/A/ /spl mu/m, while Ioff were 0.9 and 2.0pA/ /spl mu/m, respectively. SNM value of 1.10 /spl mu/m/sup 2/ 6T-SRAM bit cell was 340mV at Vdd = 1.2V. Stand-by current of the SRAM chips with HfO/sub 2/-Al/sub 2/O/sub 3/ was decreased by 2 orders, while access time was 1.65 times larger compared with that of SRAM chips with oxynitride at Vdd = 1.2V.","PeriodicalId":297052,"journal":{"name":"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fully working 1.10 /spl mu/m/sup 2/ embedded 6T-SRAM technology with high-k gate dielectric device for ultra low power applications\",\"authors\":\"H. Ryu, Woo-Young Chung, You-Jean Jang, Yong-Jun Lee, Hyung-Seok Jung, C. Oh, Hee-Sung Kang, Young-Wug Kim\",\"doi\":\"10.1109/VLSIT.2004.1345380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra low power 1.10 /spl mu/m/sup 2/ 6T-SRAM chip with HfO/sub 2/-Al/sub 2/O/sub 3/ gate dielectric was for the first time successfully demonstrated for the system-on-chip applications. By carefully optimizing gate pre-doping process, gate leakage current was dramatically suppressed and poly deletion was reduced. Device performance was improved by 15% and 12% for NFET and PFET, respectively. The threshold voltage of long channel transistor was well controlled to the acceptable value (0.4V) by channel engineering. Equivalent oxide thickness of HfO/sub 2/-Al/sub 2/O/sub 3/ film was 17/spl Aring/ and gate leakage current density was 1600-times lower than that of the oxynitride. Current performance of 90nm gate length NFET and PFET with HfO/sub 2/-Al/sub 2/O/sub 3/ were 335 and 115 /spl mu/A/ /spl mu/m, while Ioff were 0.9 and 2.0pA/ /spl mu/m, respectively. SNM value of 1.10 /spl mu/m/sup 2/ 6T-SRAM bit cell was 340mV at Vdd = 1.2V. Stand-by current of the SRAM chips with HfO/sub 2/-Al/sub 2/O/sub 3/ was decreased by 2 orders, while access time was 1.65 times larger compared with that of SRAM chips with oxynitride at Vdd = 1.2V.\",\"PeriodicalId\":297052,\"journal\":{\"name\":\"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2004.1345380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2004.1345380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully working 1.10 /spl mu/m/sup 2/ embedded 6T-SRAM technology with high-k gate dielectric device for ultra low power applications
Ultra low power 1.10 /spl mu/m/sup 2/ 6T-SRAM chip with HfO/sub 2/-Al/sub 2/O/sub 3/ gate dielectric was for the first time successfully demonstrated for the system-on-chip applications. By carefully optimizing gate pre-doping process, gate leakage current was dramatically suppressed and poly deletion was reduced. Device performance was improved by 15% and 12% for NFET and PFET, respectively. The threshold voltage of long channel transistor was well controlled to the acceptable value (0.4V) by channel engineering. Equivalent oxide thickness of HfO/sub 2/-Al/sub 2/O/sub 3/ film was 17/spl Aring/ and gate leakage current density was 1600-times lower than that of the oxynitride. Current performance of 90nm gate length NFET and PFET with HfO/sub 2/-Al/sub 2/O/sub 3/ were 335 and 115 /spl mu/A/ /spl mu/m, while Ioff were 0.9 and 2.0pA/ /spl mu/m, respectively. SNM value of 1.10 /spl mu/m/sup 2/ 6T-SRAM bit cell was 340mV at Vdd = 1.2V. Stand-by current of the SRAM chips with HfO/sub 2/-Al/sub 2/O/sub 3/ was decreased by 2 orders, while access time was 1.65 times larger compared with that of SRAM chips with oxynitride at Vdd = 1.2V.