基于路径分析的隐式室内场景结构推导

Xu Lu, Caixia Wang, Nader Karamzadeh, A. Croitoru, A. Stefanidis
{"title":"基于路径分析的隐式室内场景结构推导","authors":"Xu Lu, Caixia Wang, Nader Karamzadeh, A. Croitoru, A. Stefanidis","doi":"10.1145/2077357.2077367","DOIUrl":null,"url":null,"abstract":"Indoor video surveillance is now widely used in government, public, and private facilities. While the capacity to generate such video data is increasing, our ability to derive a coherent scene understanding of the structure of the scene and how it is being utilized, using only motion data, is still lagging behind. This paper proposes a framework for deriving indoor scene structure identifying abnormal motion behavior using only video tracking data, and without requiring a floor plan. The proposed framework, which is data-driven, is based on four sequential processing steps, namely detection of entrance and exit points, the analysis of the connectivity between entrance and exit points, the extraction of mean paths and motion corridors, and the statistical analysis of the length and velocity parameters of motion for the detection of abnormal motion behavior. The paper outlines the proposed framework and demonstrates its implementation using a real-world data set comprising 1138 trajectories.","PeriodicalId":164337,"journal":{"name":"International Symposium on Algorithms","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deriving implicit indoor scene structure with path analysis\",\"authors\":\"Xu Lu, Caixia Wang, Nader Karamzadeh, A. Croitoru, A. Stefanidis\",\"doi\":\"10.1145/2077357.2077367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor video surveillance is now widely used in government, public, and private facilities. While the capacity to generate such video data is increasing, our ability to derive a coherent scene understanding of the structure of the scene and how it is being utilized, using only motion data, is still lagging behind. This paper proposes a framework for deriving indoor scene structure identifying abnormal motion behavior using only video tracking data, and without requiring a floor plan. The proposed framework, which is data-driven, is based on four sequential processing steps, namely detection of entrance and exit points, the analysis of the connectivity between entrance and exit points, the extraction of mean paths and motion corridors, and the statistical analysis of the length and velocity parameters of motion for the detection of abnormal motion behavior. The paper outlines the proposed framework and demonstrates its implementation using a real-world data set comprising 1138 trajectories.\",\"PeriodicalId\":164337,\"journal\":{\"name\":\"International Symposium on Algorithms\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2077357.2077367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2077357.2077367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

室内视频监控现已广泛应用于政府、公共和私人设施。虽然生成此类视频数据的能力正在增加,但仅使用运动数据,我们对场景结构及其使用方式的连贯场景理解的能力仍然落后。本文提出了一种仅使用视频跟踪数据而不需要平面图的室内场景结构识别异常运动行为的框架。该框架是数据驱动的,基于四个顺序处理步骤,即入口和出口点的检测、入口和出口点之间的连通性分析、平均路径和运动走廊的提取、运动长度和速度参数的统计分析,以检测异常运动行为。本文概述了所提出的框架,并使用包含1138个轨迹的真实数据集演示了其实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deriving implicit indoor scene structure with path analysis
Indoor video surveillance is now widely used in government, public, and private facilities. While the capacity to generate such video data is increasing, our ability to derive a coherent scene understanding of the structure of the scene and how it is being utilized, using only motion data, is still lagging behind. This paper proposes a framework for deriving indoor scene structure identifying abnormal motion behavior using only video tracking data, and without requiring a floor plan. The proposed framework, which is data-driven, is based on four sequential processing steps, namely detection of entrance and exit points, the analysis of the connectivity between entrance and exit points, the extraction of mean paths and motion corridors, and the statistical analysis of the length and velocity parameters of motion for the detection of abnormal motion behavior. The paper outlines the proposed framework and demonstrates its implementation using a real-world data set comprising 1138 trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信