{"title":"指数循环联想记忆:稳定性和相对容量","authors":"M. Rajati, M. Menhaj, M. Korjani, A. Dehestani","doi":"10.1109/ICTAI.2006.58","DOIUrl":null,"url":null,"abstract":"In this paper, relative capacity of a specific higher order Hopfield-type associative memory is considered. This model, which is known as exponential Hopfield neural network is suitable for hardware implementation and is not of a great computational cost. It is shown that, this modification of the Hopfield model significantly improves the storage capacity of the associative memory. We also classify the model via a stability measure, and study the effect of training the network with biased patterns on the stability","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Recurrent Associative Memories: Stability and Relative Capacity\",\"authors\":\"M. Rajati, M. Menhaj, M. Korjani, A. Dehestani\",\"doi\":\"10.1109/ICTAI.2006.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, relative capacity of a specific higher order Hopfield-type associative memory is considered. This model, which is known as exponential Hopfield neural network is suitable for hardware implementation and is not of a great computational cost. It is shown that, this modification of the Hopfield model significantly improves the storage capacity of the associative memory. We also classify the model via a stability measure, and study the effect of training the network with biased patterns on the stability\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exponential Recurrent Associative Memories: Stability and Relative Capacity
In this paper, relative capacity of a specific higher order Hopfield-type associative memory is considered. This model, which is known as exponential Hopfield neural network is suitable for hardware implementation and is not of a great computational cost. It is shown that, this modification of the Hopfield model significantly improves the storage capacity of the associative memory. We also classify the model via a stability measure, and study the effect of training the network with biased patterns on the stability