利用时间数据建立预测模型中的信息衰减

Lasheng Yu, Mukwende Placide
{"title":"利用时间数据建立预测模型中的信息衰减","authors":"Lasheng Yu, Mukwende Placide","doi":"10.4304/JSW.7.2.479-484","DOIUrl":null,"url":null,"abstract":"Most predictive data mining methods are based on the assumption that the historical data involved in building and verifying a model are the best estimator of what will happen in the future. However, the relevance of past to the future depends on the application domain in a specific timeframe. In this paper, we present a method of predicting the future from temporal data using information decay technique that estimate the relevance of the past to the future with the help of the knowledge of the information lifetime of the temporal data. We show how to use a decision tree data mining technique to build an information-decay-based predictive model by introducing an information decay method in impurity measure functions. The relevance of the concepts is proven by comparing two decision tree-based classifiers: one built using information decay over a specific timeframe and the other built setting aside the time factor.","PeriodicalId":206833,"journal":{"name":"2010 Third International Symposium on Information Science and Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Information Decay in Building Predictive Models Using Temporal Data\",\"authors\":\"Lasheng Yu, Mukwende Placide\",\"doi\":\"10.4304/JSW.7.2.479-484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most predictive data mining methods are based on the assumption that the historical data involved in building and verifying a model are the best estimator of what will happen in the future. However, the relevance of past to the future depends on the application domain in a specific timeframe. In this paper, we present a method of predicting the future from temporal data using information decay technique that estimate the relevance of the past to the future with the help of the knowledge of the information lifetime of the temporal data. We show how to use a decision tree data mining technique to build an information-decay-based predictive model by introducing an information decay method in impurity measure functions. The relevance of the concepts is proven by comparing two decision tree-based classifiers: one built using information decay over a specific timeframe and the other built setting aside the time factor.\",\"PeriodicalId\":206833,\"journal\":{\"name\":\"2010 Third International Symposium on Information Science and Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Symposium on Information Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4304/JSW.7.2.479-484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Information Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/JSW.7.2.479-484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大多数预测性数据挖掘方法都基于这样的假设:构建和验证模型所涉及的历史数据是对未来将发生的事情的最佳估计。然而,过去与未来的相关性取决于特定时间范围内的应用程序领域。在本文中,我们提出了一种利用信息衰减技术从时间数据预测未来的方法,该技术利用时间数据的信息寿命知识来估计过去与未来的相关性。通过在杂质度量函数中引入信息衰减方法,展示了如何使用决策树数据挖掘技术来构建基于信息衰减的预测模型。通过比较两个基于决策树的分类器来证明概念的相关性:一个是使用特定时间范围内的信息衰减构建的,另一个是不考虑时间因素构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Decay in Building Predictive Models Using Temporal Data
Most predictive data mining methods are based on the assumption that the historical data involved in building and verifying a model are the best estimator of what will happen in the future. However, the relevance of past to the future depends on the application domain in a specific timeframe. In this paper, we present a method of predicting the future from temporal data using information decay technique that estimate the relevance of the past to the future with the help of the knowledge of the information lifetime of the temporal data. We show how to use a decision tree data mining technique to build an information-decay-based predictive model by introducing an information decay method in impurity measure functions. The relevance of the concepts is proven by comparing two decision tree-based classifiers: one built using information decay over a specific timeframe and the other built setting aside the time factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信