集成cpu - gpu的系统级平面感知分析

V. Nandakumar, M. Marek-Sadowska
{"title":"集成cpu - gpu的系统级平面感知分析","authors":"V. Nandakumar, M. Marek-Sadowska","doi":"10.1145/2593069.2593225","DOIUrl":null,"url":null,"abstract":"Conventional, pre-RTL SoC architectural design space exploration does not account for the chip's floorplan. However, the power and performance of integrated CPU-GPUs are highly dependent not only on architectural specifications and workload characteristics but also on the underlying floorplan. We develop a floorplan-aware system-level analysis framework for integrated CPU-GPUs and demonstrate that the overall energy efficiency can be over/under estimated by up to 25% when floorplan is not account-ed for. The floorplan-aware system-level exploration tool allows us to observe interesting dependencies between architectural choices and physical design. These observations guide the frame-work in determining energy efficient floorplans for wide-range of workloads.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System-level floorplan-aware analysis of integrated CPU-GPUs\",\"authors\":\"V. Nandakumar, M. Marek-Sadowska\",\"doi\":\"10.1145/2593069.2593225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional, pre-RTL SoC architectural design space exploration does not account for the chip's floorplan. However, the power and performance of integrated CPU-GPUs are highly dependent not only on architectural specifications and workload characteristics but also on the underlying floorplan. We develop a floorplan-aware system-level analysis framework for integrated CPU-GPUs and demonstrate that the overall energy efficiency can be over/under estimated by up to 25% when floorplan is not account-ed for. The floorplan-aware system-level exploration tool allows us to observe interesting dependencies between architectural choices and physical design. These observations guide the frame-work in determining energy efficient floorplans for wide-range of workloads.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的、rtl之前的SoC架构设计空间探索并没有考虑到芯片的平面图。然而,集成cpu - gpu的功率和性能不仅高度依赖于架构规范和工作负载特性,而且还依赖于底层平面图。我们为集成的cpu - gpu开发了一个平面图感知的系统级分析框架,并证明在不考虑平面图的情况下,整体能源效率可以高估/低估高达25%。平面图感知系统级探索工具允许我们观察架构选择和物理设计之间有趣的依赖关系。这些观察结果指导了框架工作,以确定适用于各种工作量的节能平面图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System-level floorplan-aware analysis of integrated CPU-GPUs
Conventional, pre-RTL SoC architectural design space exploration does not account for the chip's floorplan. However, the power and performance of integrated CPU-GPUs are highly dependent not only on architectural specifications and workload characteristics but also on the underlying floorplan. We develop a floorplan-aware system-level analysis framework for integrated CPU-GPUs and demonstrate that the overall energy efficiency can be over/under estimated by up to 25% when floorplan is not account-ed for. The floorplan-aware system-level exploration tool allows us to observe interesting dependencies between architectural choices and physical design. These observations guide the frame-work in determining energy efficient floorplans for wide-range of workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信