通过wi-fi日志从网络物理活动中识别购物意图和位置预测

Manpreet Kaur, Flora D. Salim, Yongli Ren, Jeffrey Chan, Martin Tomko, M. Sanderson
{"title":"通过wi-fi日志从网络物理活动中识别购物意图和位置预测","authors":"Manpreet Kaur, Flora D. Salim, Yongli Ren, Jeffrey Chan, Martin Tomko, M. Sanderson","doi":"10.1145/3276774.3276786","DOIUrl":null,"url":null,"abstract":"This paper investigates the Cyber-Physical behavior of a user in a large indoor shopping center by leveraging anonymized (opt in) Wi-Fi association and browsing logs recorded by the center operators. Our analysis shows that many users exhibit high correlation between their cyber activities and physical context. To find this correlation, we propose a mechanism to semantically label a physical space with rich categorical information from Wikipedia concepts and compute a contextual similarity that represents a customer's activities with the mall context. We further show the use of cyber-physical contextual similarity in two different applications: user behavior classification and future location prediction. The experimental results demonstrate that the users' contextual similarity significantly improves the accuracy of such applications.","PeriodicalId":294697,"journal":{"name":"Proceedings of the 5th Conference on Systems for Built Environments","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Shopping intent recognition and location prediction from cyber-physical activities via wi-fi logs\",\"authors\":\"Manpreet Kaur, Flora D. Salim, Yongli Ren, Jeffrey Chan, Martin Tomko, M. Sanderson\",\"doi\":\"10.1145/3276774.3276786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the Cyber-Physical behavior of a user in a large indoor shopping center by leveraging anonymized (opt in) Wi-Fi association and browsing logs recorded by the center operators. Our analysis shows that many users exhibit high correlation between their cyber activities and physical context. To find this correlation, we propose a mechanism to semantically label a physical space with rich categorical information from Wikipedia concepts and compute a contextual similarity that represents a customer's activities with the mall context. We further show the use of cyber-physical contextual similarity in two different applications: user behavior classification and future location prediction. The experimental results demonstrate that the users' contextual similarity significantly improves the accuracy of such applications.\",\"PeriodicalId\":294697,\"journal\":{\"name\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3276774.3276786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Conference on Systems for Built Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276774.3276786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文通过利用匿名(选择加入)Wi-Fi关联和中心运营商记录的浏览日志,调查了大型室内购物中心用户的网络物理行为。我们的分析表明,许多用户在他们的网络活动和物理环境之间表现出高度的相关性。为了找到这种相关性,我们提出了一种机制,用维基百科概念中的丰富分类信息对物理空间进行语义标记,并计算上下文相似性,该相似性表示客户与商场上下文的活动。我们进一步展示了网络物理上下文相似性在两种不同应用中的使用:用户行为分类和未来位置预测。实验结果表明,用户上下文相似度显著提高了此类应用的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shopping intent recognition and location prediction from cyber-physical activities via wi-fi logs
This paper investigates the Cyber-Physical behavior of a user in a large indoor shopping center by leveraging anonymized (opt in) Wi-Fi association and browsing logs recorded by the center operators. Our analysis shows that many users exhibit high correlation between their cyber activities and physical context. To find this correlation, we propose a mechanism to semantically label a physical space with rich categorical information from Wikipedia concepts and compute a contextual similarity that represents a customer's activities with the mall context. We further show the use of cyber-physical contextual similarity in two different applications: user behavior classification and future location prediction. The experimental results demonstrate that the users' contextual similarity significantly improves the accuracy of such applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信