Manpreet Kaur, Flora D. Salim, Yongli Ren, Jeffrey Chan, Martin Tomko, M. Sanderson
{"title":"通过wi-fi日志从网络物理活动中识别购物意图和位置预测","authors":"Manpreet Kaur, Flora D. Salim, Yongli Ren, Jeffrey Chan, Martin Tomko, M. Sanderson","doi":"10.1145/3276774.3276786","DOIUrl":null,"url":null,"abstract":"This paper investigates the Cyber-Physical behavior of a user in a large indoor shopping center by leveraging anonymized (opt in) Wi-Fi association and browsing logs recorded by the center operators. Our analysis shows that many users exhibit high correlation between their cyber activities and physical context. To find this correlation, we propose a mechanism to semantically label a physical space with rich categorical information from Wikipedia concepts and compute a contextual similarity that represents a customer's activities with the mall context. We further show the use of cyber-physical contextual similarity in two different applications: user behavior classification and future location prediction. The experimental results demonstrate that the users' contextual similarity significantly improves the accuracy of such applications.","PeriodicalId":294697,"journal":{"name":"Proceedings of the 5th Conference on Systems for Built Environments","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Shopping intent recognition and location prediction from cyber-physical activities via wi-fi logs\",\"authors\":\"Manpreet Kaur, Flora D. Salim, Yongli Ren, Jeffrey Chan, Martin Tomko, M. Sanderson\",\"doi\":\"10.1145/3276774.3276786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the Cyber-Physical behavior of a user in a large indoor shopping center by leveraging anonymized (opt in) Wi-Fi association and browsing logs recorded by the center operators. Our analysis shows that many users exhibit high correlation between their cyber activities and physical context. To find this correlation, we propose a mechanism to semantically label a physical space with rich categorical information from Wikipedia concepts and compute a contextual similarity that represents a customer's activities with the mall context. We further show the use of cyber-physical contextual similarity in two different applications: user behavior classification and future location prediction. The experimental results demonstrate that the users' contextual similarity significantly improves the accuracy of such applications.\",\"PeriodicalId\":294697,\"journal\":{\"name\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3276774.3276786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Conference on Systems for Built Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276774.3276786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shopping intent recognition and location prediction from cyber-physical activities via wi-fi logs
This paper investigates the Cyber-Physical behavior of a user in a large indoor shopping center by leveraging anonymized (opt in) Wi-Fi association and browsing logs recorded by the center operators. Our analysis shows that many users exhibit high correlation between their cyber activities and physical context. To find this correlation, we propose a mechanism to semantically label a physical space with rich categorical information from Wikipedia concepts and compute a contextual similarity that represents a customer's activities with the mall context. We further show the use of cyber-physical contextual similarity in two different applications: user behavior classification and future location prediction. The experimental results demonstrate that the users' contextual similarity significantly improves the accuracy of such applications.