基于R的大型社交推特网络数据分类

Muhammad Umer, Muhammad Javaid Iqbal, Tuba Mansoor, Muhammad Usman Nasir, Ali Asif, A. Ikram
{"title":"基于R的大型社交推特网络数据分类","authors":"Muhammad Umer, Muhammad Javaid Iqbal, Tuba Mansoor, Muhammad Usman Nasir, Ali Asif, A. Ikram","doi":"10.56536/jicet.v3i1.56","DOIUrl":null,"url":null,"abstract":"The development of social networks has altered computer science research. Now, a vast amount of data is available via Twitter, Facebook, emails, and IoT. (Internet of Things). So, storing and analyzing these data has become very difficult for academics. Conventional frameworks have been ineffective in processing massive amounts of data. R is an open-source programming language designed for large-scale data analysis with higher accuracy. \nAdditionally, it offers the chance to implement the R programming language. This essay examines the application of R to classify sizable social network data. The Naive Bayes method is used to categorize massive amounts of Twitter data. The experiment has demonstrated that a sizable portion of data may be adequately classified with positive outcomes utilizing the R framework.","PeriodicalId":145637,"journal":{"name":"Journal of Innovative Computing and Emerging Technologies","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Large Social Twitter Network Data Using R\",\"authors\":\"Muhammad Umer, Muhammad Javaid Iqbal, Tuba Mansoor, Muhammad Usman Nasir, Ali Asif, A. Ikram\",\"doi\":\"10.56536/jicet.v3i1.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of social networks has altered computer science research. Now, a vast amount of data is available via Twitter, Facebook, emails, and IoT. (Internet of Things). So, storing and analyzing these data has become very difficult for academics. Conventional frameworks have been ineffective in processing massive amounts of data. R is an open-source programming language designed for large-scale data analysis with higher accuracy. \\nAdditionally, it offers the chance to implement the R programming language. This essay examines the application of R to classify sizable social network data. The Naive Bayes method is used to categorize massive amounts of Twitter data. The experiment has demonstrated that a sizable portion of data may be adequately classified with positive outcomes utilizing the R framework.\",\"PeriodicalId\":145637,\"journal\":{\"name\":\"Journal of Innovative Computing and Emerging Technologies\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Computing and Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56536/jicet.v3i1.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Computing and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56536/jicet.v3i1.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交网络的发展改变了计算机科学研究。现在,大量的数据可以通过Twitter、Facebook、电子邮件和物联网获得。(物联网)。因此,存储和分析这些数据对学者来说变得非常困难。传统的框架在处理大量数据时是无效的。R是一种开源编程语言,专为高精度的大规模数据分析而设计。此外,它还提供了实现R编程语言的机会。本文研究了R在对大型社交网络数据进行分类中的应用。朴素贝叶斯方法用于对大量Twitter数据进行分类。实验表明,使用R框架可以对相当大一部分数据进行充分分类,并产生积极的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Large Social Twitter Network Data Using R
The development of social networks has altered computer science research. Now, a vast amount of data is available via Twitter, Facebook, emails, and IoT. (Internet of Things). So, storing and analyzing these data has become very difficult for academics. Conventional frameworks have been ineffective in processing massive amounts of data. R is an open-source programming language designed for large-scale data analysis with higher accuracy. Additionally, it offers the chance to implement the R programming language. This essay examines the application of R to classify sizable social network data. The Naive Bayes method is used to categorize massive amounts of Twitter data. The experiment has demonstrated that a sizable portion of data may be adequately classified with positive outcomes utilizing the R framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信