57-64 GHz有源可调谐毫米波反射面,用于减缓阻塞和物理层安全

S. Venkatesh, H. Saeidi, Xuyang Lu, K. Sengupta
{"title":"57-64 GHz有源可调谐毫米波反射面,用于减缓阻塞和物理层安全","authors":"S. Venkatesh, H. Saeidi, Xuyang Lu, K. Sengupta","doi":"10.1109/RFIC54546.2022.9863076","DOIUrl":null,"url":null,"abstract":"Millimeter-wave wireless networks allow for spatial multiplexing and high throughput. However, they are critically susceptible to blockages, channel propagation variations, and fading. To incorporate resilience in such networks, a class of reconfigurable surfaces realized with reflect-arrays have shown theoretical promise in reconfiguring the channel on demand, creating programmable non-line-of-sight (NLOS) paths, and providing a scalable solution compared to densification of base stations and access points. In this paper, we present a scalable approach towards realizing active surfaces with the ability to simultaneously receive, amplify, beamform, and re-transmit to the intended receiver (Rx) in a secure fashion. We demonstrate with the proof-of-concept 2D and 1D arrays realized with custom silicon ICs in a 65-nm CMOS process while the reception and re-transmission is achieved through off-chip packaged dual-feed probe-fed patch antenna. Each chip incorporates two independent transceiver (TxRx) chains, with two-stage LNA and a 5-bit controlled 360° IQ phase shifter, collectively providing controllable gain of up to 15.2dB, Psat of 4.2dBm at 60GHz, noise figure ≈ 5–6dB, and supporting up to 20Gbps with 32-QAM constellation. With packaged 1D and 2D arrays, we demonstrate ±45° beamforming capability for various Tx positions closing links where simple reflective surfaces tend to fail. In addition, with spatio-temporal control over the surface, we also demonstrate physical layer security.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Active Tunable Millimeter-wave Reflective Surface across 57-64 GHz for Blockage Mitigation and Physical Layer Security\",\"authors\":\"S. Venkatesh, H. Saeidi, Xuyang Lu, K. Sengupta\",\"doi\":\"10.1109/RFIC54546.2022.9863076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave wireless networks allow for spatial multiplexing and high throughput. However, they are critically susceptible to blockages, channel propagation variations, and fading. To incorporate resilience in such networks, a class of reconfigurable surfaces realized with reflect-arrays have shown theoretical promise in reconfiguring the channel on demand, creating programmable non-line-of-sight (NLOS) paths, and providing a scalable solution compared to densification of base stations and access points. In this paper, we present a scalable approach towards realizing active surfaces with the ability to simultaneously receive, amplify, beamform, and re-transmit to the intended receiver (Rx) in a secure fashion. We demonstrate with the proof-of-concept 2D and 1D arrays realized with custom silicon ICs in a 65-nm CMOS process while the reception and re-transmission is achieved through off-chip packaged dual-feed probe-fed patch antenna. Each chip incorporates two independent transceiver (TxRx) chains, with two-stage LNA and a 5-bit controlled 360° IQ phase shifter, collectively providing controllable gain of up to 15.2dB, Psat of 4.2dBm at 60GHz, noise figure ≈ 5–6dB, and supporting up to 20Gbps with 32-QAM constellation. With packaged 1D and 2D arrays, we demonstrate ±45° beamforming capability for various Tx positions closing links where simple reflective surfaces tend to fail. In addition, with spatio-temporal control over the surface, we also demonstrate physical layer security.\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

毫米波无线网络允许空间复用和高吞吐量。然而,它们非常容易受到阻塞、信道传播变化和衰落的影响。为了在这样的网络中加入弹性,用反射阵列实现的一类可重构表面在按需重新配置信道、创建可编程的非视距(NLOS)路径以及提供与基站和接入点密度相比的可扩展解决方案方面显示出了理论上的前景。在本文中,我们提出了一种可扩展的方法来实现具有同时接收、放大、波束形成和以安全方式重新发送到预期接收器(Rx)的能力的活动表面。我们演示了在65纳米CMOS工艺中使用定制硅集成电路实现的概念验证2D和1D阵列,而通过片外封装双馈探针馈电贴片天线实现接收和再传输。每个芯片包含两个独立的收发器(TxRx)链,带有两级LNA和一个5位可控360°IQ移相器,共同提供高达15.2dB的可控增益,60GHz时的Psat为4.2dBm,噪声系数≈5-6dB,支持32-QAM星座时的最高20Gbps。通过封装的1D和2D阵列,我们展示了±45°波束形成能力,适用于各种Tx位置,关闭简单反射表面容易失效的链路。此外,通过对表面的时空控制,我们还演示了物理层的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Tunable Millimeter-wave Reflective Surface across 57-64 GHz for Blockage Mitigation and Physical Layer Security
Millimeter-wave wireless networks allow for spatial multiplexing and high throughput. However, they are critically susceptible to blockages, channel propagation variations, and fading. To incorporate resilience in such networks, a class of reconfigurable surfaces realized with reflect-arrays have shown theoretical promise in reconfiguring the channel on demand, creating programmable non-line-of-sight (NLOS) paths, and providing a scalable solution compared to densification of base stations and access points. In this paper, we present a scalable approach towards realizing active surfaces with the ability to simultaneously receive, amplify, beamform, and re-transmit to the intended receiver (Rx) in a secure fashion. We demonstrate with the proof-of-concept 2D and 1D arrays realized with custom silicon ICs in a 65-nm CMOS process while the reception and re-transmission is achieved through off-chip packaged dual-feed probe-fed patch antenna. Each chip incorporates two independent transceiver (TxRx) chains, with two-stage LNA and a 5-bit controlled 360° IQ phase shifter, collectively providing controllable gain of up to 15.2dB, Psat of 4.2dBm at 60GHz, noise figure ≈ 5–6dB, and supporting up to 20Gbps with 32-QAM constellation. With packaged 1D and 2D arrays, we demonstrate ±45° beamforming capability for various Tx positions closing links where simple reflective surfaces tend to fail. In addition, with spatio-temporal control over the surface, we also demonstrate physical layer security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信