构造单连通平面域间的微分同构

K. Atkinson, D. Chien, O. Hansen
{"title":"构造单连通平面域间的微分同构","authors":"K. Atkinson, D. Chien, O. Hansen","doi":"10.1553/etna_vol55s671","DOIUrl":null,"url":null,"abstract":". Consider a simply connected domain Ω ⊂ R 2 with boundary ∂ Ω that is given by a smooth function ϕ : [ a,b ] (cid:55)→ R 2 . Our goal is to calculate a diffeomorphism Φ : B 1 (0) (cid:55)→ Ω , B 1 (0) the open unit disk in R 2 . We present two different methods where both methods are able to handle boundaries ∂ Ω that are not star-shaped. The first method is based on an optimization algorithm that optimizes the curvature of the boundary, and the second method is based on the physical principle of minimizing a potential energy. Both methods construct first a homotopy between the boundary ∂ B 1 (0) and ∂ Ω and then extend the boundary homotopy to the inside of the domains. Numerical examples show that the method is applicable to a wide variety of domains Ω .","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constructing diffeomorphisms between simply connected plane domains\",\"authors\":\"K. Atkinson, D. Chien, O. Hansen\",\"doi\":\"10.1553/etna_vol55s671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Consider a simply connected domain Ω ⊂ R 2 with boundary ∂ Ω that is given by a smooth function ϕ : [ a,b ] (cid:55)→ R 2 . Our goal is to calculate a diffeomorphism Φ : B 1 (0) (cid:55)→ Ω , B 1 (0) the open unit disk in R 2 . We present two different methods where both methods are able to handle boundaries ∂ Ω that are not star-shaped. The first method is based on an optimization algorithm that optimizes the curvature of the boundary, and the second method is based on the physical principle of minimizing a potential energy. Both methods construct first a homotopy between the boundary ∂ B 1 (0) and ∂ Ω and then extend the boundary homotopy to the inside of the domains. Numerical examples show that the method is applicable to a wide variety of domains Ω .\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 考虑一个单连通域Ω∧r2,其边界∂Ω由光滑函数φ: [a,b] (cid:55)→r2给出。我们的目标是计算一个微分同构Φ: b1 (0) (cid:55)→Ω, b1 (0) r2中的开放单元磁盘。我们给出了两种不同的方法,这两种方法都能够处理不是星形的边界∂Ω。第一种方法是基于优化边界曲率的优化算法,第二种方法是基于最小化势能的物理原理。这两种方法首先在边界∂b1(0)和∂Ω之间构造一个同伦,然后将边界同伦扩展到域的内部。数值算例表明,该方法适用于多种领域Ω。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing diffeomorphisms between simply connected plane domains
. Consider a simply connected domain Ω ⊂ R 2 with boundary ∂ Ω that is given by a smooth function ϕ : [ a,b ] (cid:55)→ R 2 . Our goal is to calculate a diffeomorphism Φ : B 1 (0) (cid:55)→ Ω , B 1 (0) the open unit disk in R 2 . We present two different methods where both methods are able to handle boundaries ∂ Ω that are not star-shaped. The first method is based on an optimization algorithm that optimizes the curvature of the boundary, and the second method is based on the physical principle of minimizing a potential energy. Both methods construct first a homotopy between the boundary ∂ B 1 (0) and ∂ Ω and then extend the boundary homotopy to the inside of the domains. Numerical examples show that the method is applicable to a wide variety of domains Ω .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信