利用机器学习模型预测彼尔姆地区自然资源潜力

A. Kopoteva, A. A. Maksimov, N. Sirotina
{"title":"利用机器学习模型预测彼尔姆地区自然资源潜力","authors":"A. Kopoteva, A. A. Maksimov, N. Sirotina","doi":"10.14529/ctcr210411","DOIUrl":null,"url":null,"abstract":"In the article we consider a complex indicator of region natural resource potential modeling and forecasting quality improvement using different machine learning models. Problem under consideration importance is determined by the fact that the models traditionally used for these purposes demonstrate either low quality, or high configuration and parameters evaluation difficulty. The aim of the study is determination of machine learning models that provide the optimal values of various modeling quality metrics. Materials and methods. For this study purposes we considered the multiple linear regression, decision tree, random forest, gradient boosting and multilayer perceptron mo¬dels. We used the determination coefficient R2, the root mean square error of modeling RMSE, the average absolute error of modeling MAE, and the relative error of prediction for 1 and 2 time intervals as quality metrics. This study is based on data of the complex indicator of the Perm Region natural resource potential and the system of its determining factors in the time interval from 2001 to 2018. We evaluate models and calculate quality metrics using Pandas and Scikit-learn Python libraries in Jupiter Notebook environment. Results. According to our research the classical multiple linear regression model demonstrates the worst results for all quality metrics under consideration. The decision tree model demonstrates determination coefficient maximum value and minimum root mean square error and mean absolute error. Minimum relative forecasting error for 2017 is provided by the gradient boosting model, for 2018 – by the multilayer perceptron model. Conclusion. Our study allows us to affirm that nonlinear machine learning models for the task of region natural resource potential modeling and forecasting demonstrate better approximating and predictive properties compared to multiple linear regression and thus can be used to improve the quality of natural resource management.","PeriodicalId":338904,"journal":{"name":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perm Region Natural Resource Potential Forecasting Using Machine Learning Models\",\"authors\":\"A. Kopoteva, A. A. Maksimov, N. Sirotina\",\"doi\":\"10.14529/ctcr210411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article we consider a complex indicator of region natural resource potential modeling and forecasting quality improvement using different machine learning models. Problem under consideration importance is determined by the fact that the models traditionally used for these purposes demonstrate either low quality, or high configuration and parameters evaluation difficulty. The aim of the study is determination of machine learning models that provide the optimal values of various modeling quality metrics. Materials and methods. For this study purposes we considered the multiple linear regression, decision tree, random forest, gradient boosting and multilayer perceptron mo¬dels. We used the determination coefficient R2, the root mean square error of modeling RMSE, the average absolute error of modeling MAE, and the relative error of prediction for 1 and 2 time intervals as quality metrics. This study is based on data of the complex indicator of the Perm Region natural resource potential and the system of its determining factors in the time interval from 2001 to 2018. We evaluate models and calculate quality metrics using Pandas and Scikit-learn Python libraries in Jupiter Notebook environment. Results. According to our research the classical multiple linear regression model demonstrates the worst results for all quality metrics under consideration. The decision tree model demonstrates determination coefficient maximum value and minimum root mean square error and mean absolute error. Minimum relative forecasting error for 2017 is provided by the gradient boosting model, for 2018 – by the multilayer perceptron model. Conclusion. Our study allows us to affirm that nonlinear machine learning models for the task of region natural resource potential modeling and forecasting demonstrate better approximating and predictive properties compared to multiple linear regression and thus can be used to improve the quality of natural resource management.\",\"PeriodicalId\":338904,\"journal\":{\"name\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/ctcr210411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/ctcr210411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一个复杂的指标,区域自然资源潜力建模和预测质量改进使用不同的机器学习模型。所考虑的问题的重要性取决于这样一个事实,即传统上用于这些目的的模型要么质量低,要么结构和参数评估难度高。该研究的目的是确定提供各种建模质量指标的最佳值的机器学习模型。材料和方法。在本研究中,我们考虑了多元线性回归、决策树、随机森林、梯度增强和多层感知器模型。我们使用决定系数R2、建模RMSE的均方根误差、建模MAE的平均绝对误差和预测1和2个时间间隔的相对误差作为质量指标。本研究基于2001 - 2018年彼尔姆地区自然资源潜力复杂指标及其决定因素系统数据。我们使用Pandas和Scikit-learn Python库在Jupiter Notebook环境中评估模型并计算质量指标。结果。根据我们的研究,经典的多元线性回归模型显示了所有考虑的质量指标的最差结果。决策树模型展示了决定系数最大值和最小均方根误差和平均绝对误差。2017年的最小相对预测误差由梯度增强模型提供,2018年-由多层感知器模型提供。结论。我们的研究证实,与多元线性回归相比,用于区域自然资源潜力建模和预测任务的非线性机器学习模型具有更好的近似和预测特性,从而可以用于提高自然资源管理的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perm Region Natural Resource Potential Forecasting Using Machine Learning Models
In the article we consider a complex indicator of region natural resource potential modeling and forecasting quality improvement using different machine learning models. Problem under consideration importance is determined by the fact that the models traditionally used for these purposes demonstrate either low quality, or high configuration and parameters evaluation difficulty. The aim of the study is determination of machine learning models that provide the optimal values of various modeling quality metrics. Materials and methods. For this study purposes we considered the multiple linear regression, decision tree, random forest, gradient boosting and multilayer perceptron mo¬dels. We used the determination coefficient R2, the root mean square error of modeling RMSE, the average absolute error of modeling MAE, and the relative error of prediction for 1 and 2 time intervals as quality metrics. This study is based on data of the complex indicator of the Perm Region natural resource potential and the system of its determining factors in the time interval from 2001 to 2018. We evaluate models and calculate quality metrics using Pandas and Scikit-learn Python libraries in Jupiter Notebook environment. Results. According to our research the classical multiple linear regression model demonstrates the worst results for all quality metrics under consideration. The decision tree model demonstrates determination coefficient maximum value and minimum root mean square error and mean absolute error. Minimum relative forecasting error for 2017 is provided by the gradient boosting model, for 2018 – by the multilayer perceptron model. Conclusion. Our study allows us to affirm that nonlinear machine learning models for the task of region natural resource potential modeling and forecasting demonstrate better approximating and predictive properties compared to multiple linear regression and thus can be used to improve the quality of natural resource management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信