中性粒细胞字面数的随机数生成和拟合优度检验

M. B. Zeina, Mohamad Taher Anan, Yousef Marjamak
{"title":"中性粒细胞字面数的随机数生成和拟合优度检验","authors":"M. B. Zeina, Mohamad Taher Anan, Yousef Marjamak","doi":"10.54216/gjmsa.040201","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for generating random numbers that follow literal neutrosophic distributions using algebraic isomorphisms. The algorithm was applied to three distributions: literal neutrosophic uniform distribution, literal neutrosophic exponential distribution, and literal neutrosophic normal distribution. We also proposed a development of the Kolmogorov-Smirnov test to analyze goodness-of-fit for literal neutrosophic data. To evaluate the effectiveness of the proposed method, a simulation study was conducted, and the power results showed that increasing the sample size improved the test power. Our research contributes to the development of statistical methods for analyzing literal neutrosophic data, which has applications in a wide range of fields.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Numbers Generation and Goodness-of-Fit Testing for Literal Neutrosophic Numbers\",\"authors\":\"M. B. Zeina, Mohamad Taher Anan, Yousef Marjamak\",\"doi\":\"10.54216/gjmsa.040201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm for generating random numbers that follow literal neutrosophic distributions using algebraic isomorphisms. The algorithm was applied to three distributions: literal neutrosophic uniform distribution, literal neutrosophic exponential distribution, and literal neutrosophic normal distribution. We also proposed a development of the Kolmogorov-Smirnov test to analyze goodness-of-fit for literal neutrosophic data. To evaluate the effectiveness of the proposed method, a simulation study was conducted, and the power results showed that increasing the sample size improved the test power. Our research contributes to the development of statistical methods for analyzing literal neutrosophic data, which has applications in a wide range of fields.\",\"PeriodicalId\":299243,\"journal\":{\"name\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galoitica: Journal of Mathematical Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/gjmsa.040201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.040201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用代数同构生成遵循字面中性分布的随机数的算法。该算法应用于三种分布:嗜中性均匀分布、嗜中性指数分布和嗜中性正态分布。我们还提出了Kolmogorov-Smirnov检验的发展,以分析字面中性粒细胞数据的拟合优度。为了评估该方法的有效性,进行了仿真研究,功率结果表明,增加样本量可以提高测试功率。我们的研究有助于发展用于分析嗜中性粒细胞数据的统计方法,这在广泛的领域有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Numbers Generation and Goodness-of-Fit Testing for Literal Neutrosophic Numbers
This paper presents an algorithm for generating random numbers that follow literal neutrosophic distributions using algebraic isomorphisms. The algorithm was applied to three distributions: literal neutrosophic uniform distribution, literal neutrosophic exponential distribution, and literal neutrosophic normal distribution. We also proposed a development of the Kolmogorov-Smirnov test to analyze goodness-of-fit for literal neutrosophic data. To evaluate the effectiveness of the proposed method, a simulation study was conducted, and the power results showed that increasing the sample size improved the test power. Our research contributes to the development of statistical methods for analyzing literal neutrosophic data, which has applications in a wide range of fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信