结论:通过精简和共同定位DNN和CPU作业来提高资源利用率

Han Zhao, Weihao Cui, Quan Chen, Jingwen Leng, Kai Yu, Deze Zeng, Chao Li, M. Guo
{"title":"结论:通过精简和共同定位DNN和CPU作业来提高资源利用率","authors":"Han Zhao, Weihao Cui, Quan Chen, Jingwen Leng, Kai Yu, Deze Zeng, Chao Li, M. Guo","doi":"10.1109/ICDCS47774.2020.00069","DOIUrl":null,"url":null,"abstract":"While deep neural network (DNN) models are often trained on GPUs, many companies and research institutes build GPU clusters that are shared by different groups. On such GPU cluster, DNN training jobs also require CPU cores to run pre-processing, gradient synchronization. Our investigation shows that the number of cores allocated to a training job significantly impact its performance. To this end, we characterize representative deep learning models on their requirement for CPU cores under different GPU resource configurations, and study the sensitivity of these models to other CPU-side shared resources. Based on the characterization, we propose CODA, a scheduling system that is comprised of an adaptive CPU allocator, a real-time contention eliminator, and a multi-array job scheduler. Experimental results show that CODA improves GPU utilization by 20.8% on average without increasing the queuing time of CPU jobs.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"CODA: Improving Resource Utilization by Slimming and Co-locating DNN and CPU Jobs\",\"authors\":\"Han Zhao, Weihao Cui, Quan Chen, Jingwen Leng, Kai Yu, Deze Zeng, Chao Li, M. Guo\",\"doi\":\"10.1109/ICDCS47774.2020.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While deep neural network (DNN) models are often trained on GPUs, many companies and research institutes build GPU clusters that are shared by different groups. On such GPU cluster, DNN training jobs also require CPU cores to run pre-processing, gradient synchronization. Our investigation shows that the number of cores allocated to a training job significantly impact its performance. To this end, we characterize representative deep learning models on their requirement for CPU cores under different GPU resource configurations, and study the sensitivity of these models to other CPU-side shared resources. Based on the characterization, we propose CODA, a scheduling system that is comprised of an adaptive CPU allocator, a real-time contention eliminator, and a multi-array job scheduler. Experimental results show that CODA improves GPU utilization by 20.8% on average without increasing the queuing time of CPU jobs.\",\"PeriodicalId\":158630,\"journal\":{\"name\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS47774.2020.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

虽然深度神经网络(DNN)模型通常在GPU上进行训练,但许多公司和研究机构构建的GPU集群由不同的团队共享。在这样的GPU集群上,DNN训练作业也需要CPU内核来进行预处理、梯度同步。我们的调查表明,分配给训练任务的核心数量会显著影响其性能。为此,我们对不同GPU资源配置下具有代表性的深度学习模型的CPU内核需求进行了表征,并研究了这些模型对其他CPU端共享资源的敏感性。在此基础上,我们提出了一个由自适应CPU分配器、实时争用消除器和多阵列作业调度器组成的调度系统CODA。实验结果表明,CODA在不增加CPU作业排队时间的情况下,平均提高了20.8%的GPU利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CODA: Improving Resource Utilization by Slimming and Co-locating DNN and CPU Jobs
While deep neural network (DNN) models are often trained on GPUs, many companies and research institutes build GPU clusters that are shared by different groups. On such GPU cluster, DNN training jobs also require CPU cores to run pre-processing, gradient synchronization. Our investigation shows that the number of cores allocated to a training job significantly impact its performance. To this end, we characterize representative deep learning models on their requirement for CPU cores under different GPU resource configurations, and study the sensitivity of these models to other CPU-side shared resources. Based on the characterization, we propose CODA, a scheduling system that is comprised of an adaptive CPU allocator, a real-time contention eliminator, and a multi-array job scheduler. Experimental results show that CODA improves GPU utilization by 20.8% on average without increasing the queuing time of CPU jobs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信