太阳耀斑分级预测机器学习算法的评价与比较

S. Gandhi, Aishawariya Athawale, H. Julasana, S. Purohit
{"title":"太阳耀斑分级预测机器学习算法的评价与比较","authors":"S. Gandhi, Aishawariya Athawale, H. Julasana, S. Purohit","doi":"10.1109/aimv53313.2021.9671015","DOIUrl":null,"url":null,"abstract":"Due to powerful and sudden release of magnetic energy, solar flares pose a great threat to technological systems in space as well as on ground. This study explores the potential of machine learning in predicting the class of solar flare namely- B: weakest flare, C: weak flare, M: strong flare, X: strongest flare and N: no flare. The study aims to apply machine learning algorithms on SDO/HMI vector magnetic field data obtained by the Space-weather HMI Active Region Patches (SHARP) and assess the performance of different machine learning algorithms namely Logistic Regression, K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision tree, Random Forest, Adaptive Boosting and Gradient Boosting with respect to different performance metrics. Of all applied algorithms, Random Forest was found to outperform other classification algorithms.","PeriodicalId":135318,"journal":{"name":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation and Comparison of Machine Learning Algorithms for Solar Flare Class Prediction\",\"authors\":\"S. Gandhi, Aishawariya Athawale, H. Julasana, S. Purohit\",\"doi\":\"10.1109/aimv53313.2021.9671015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to powerful and sudden release of magnetic energy, solar flares pose a great threat to technological systems in space as well as on ground. This study explores the potential of machine learning in predicting the class of solar flare namely- B: weakest flare, C: weak flare, M: strong flare, X: strongest flare and N: no flare. The study aims to apply machine learning algorithms on SDO/HMI vector magnetic field data obtained by the Space-weather HMI Active Region Patches (SHARP) and assess the performance of different machine learning algorithms namely Logistic Regression, K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision tree, Random Forest, Adaptive Boosting and Gradient Boosting with respect to different performance metrics. Of all applied algorithms, Random Forest was found to outperform other classification algorithms.\",\"PeriodicalId\":135318,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aimv53313.2021.9671015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aimv53313.2021.9671015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于强大而突然的磁能释放,太阳耀斑对空间和地面的技术系统构成了巨大的威胁。这项研究探索了机器学习在预测太阳耀斑等级方面的潜力,即- B:最弱耀斑,C:弱耀斑,M:强耀斑,X:最强耀斑和N:无耀斑。该研究旨在将机器学习算法应用于由空间气象HMI活动区域补丁(SHARP)获得的SDO/HMI矢量磁场数据,并评估不同机器学习算法的性能,即逻辑回归,k -最近邻(KNN),支持向量机(SVM),决策树,随机森林,自适应增强和梯度增强。在所有应用的算法中,随机森林被发现优于其他分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation and Comparison of Machine Learning Algorithms for Solar Flare Class Prediction
Due to powerful and sudden release of magnetic energy, solar flares pose a great threat to technological systems in space as well as on ground. This study explores the potential of machine learning in predicting the class of solar flare namely- B: weakest flare, C: weak flare, M: strong flare, X: strongest flare and N: no flare. The study aims to apply machine learning algorithms on SDO/HMI vector magnetic field data obtained by the Space-weather HMI Active Region Patches (SHARP) and assess the performance of different machine learning algorithms namely Logistic Regression, K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision tree, Random Forest, Adaptive Boosting and Gradient Boosting with respect to different performance metrics. Of all applied algorithms, Random Forest was found to outperform other classification algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信