基于逻辑回归的快速大规模数据挖掘算法

Omid Rouhani-Kalleh
{"title":"基于逻辑回归的快速大规模数据挖掘算法","authors":"Omid Rouhani-Kalleh","doi":"10.1109/CIDM.2007.368867","DOIUrl":null,"url":null,"abstract":"This paper proposes two new efficient algorithms to train logistic regression classifiers using very large data sets. Our algorithms will lower the upper bound time complexity that the existing algorithm in the literature has and our experiments confirm that our proposed algorithms significantly improve the execution time. For our data sets, which come from Microsoft's Web logs, the execution time was reduced up to 353 times as compared to the algorithm often referenced in the literature. The improvement will be even greater for larger data sets","PeriodicalId":423707,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Data Mining","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Algorithms for Fast Large Scale Data Mining Using Logistic Regression\",\"authors\":\"Omid Rouhani-Kalleh\",\"doi\":\"10.1109/CIDM.2007.368867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two new efficient algorithms to train logistic regression classifiers using very large data sets. Our algorithms will lower the upper bound time complexity that the existing algorithm in the literature has and our experiments confirm that our proposed algorithms significantly improve the execution time. For our data sets, which come from Microsoft's Web logs, the execution time was reduced up to 353 times as compared to the algorithm often referenced in the literature. The improvement will be even greater for larger data sets\",\"PeriodicalId\":423707,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Data Mining\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2007.368867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2007.368867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了两种新的高效算法来训练超大型数据集的逻辑回归分类器。我们的算法将降低文献中现有算法的上界时间复杂度,并且我们的实验证实我们提出的算法显着提高了执行时间。对于我们的数据集(来自Microsoft的Web日志),与文献中经常引用的算法相比,执行时间减少了353倍。对于更大的数据集,改进会更大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for Fast Large Scale Data Mining Using Logistic Regression
This paper proposes two new efficient algorithms to train logistic regression classifiers using very large data sets. Our algorithms will lower the upper bound time complexity that the existing algorithm in the literature has and our experiments confirm that our proposed algorithms significantly improve the execution time. For our data sets, which come from Microsoft's Web logs, the execution time was reduced up to 353 times as compared to the algorithm often referenced in the literature. The improvement will be even greater for larger data sets
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信