超声图像分析中的模型不可知性解释技术

Nicoletta Prentzas, Marios Pitsiali, E. Kyriacou, Andrew N. Nicolaides, A. Kakas, C. Pattichis
{"title":"超声图像分析中的模型不可知性解释技术","authors":"Nicoletta Prentzas, Marios Pitsiali, E. Kyriacou, Andrew N. Nicolaides, A. Kakas, C. Pattichis","doi":"10.1109/BIBE52308.2021.9635199","DOIUrl":null,"url":null,"abstract":"The current adoption of Medical Artificial Intelligence (AI) solutions in clinical practice suggest that despite its undeniable potential AI is not achieving this potential. A major barrier to its adoption is the lack of transparency and interpretability, and the inability of the system to explain its results. Explainable AI (XAI) is an emerging field in AI that aims to address these barriers, with the development of new or modified algorithms to enable transparency, provide explanations in a way that humans can understand and foster trust. Numerous XAI techniques have been proposed in the literature, commonly classified as model-agnostic or model-specific. In this study, we examine the application of four model-agnostic XAI techniques (LIME, SHAP, ANCHORS, inTrees) to an XGBoost classifier trained on real-life medical data for the prediction of high-risk asymptomatic carotid plaques based on ultrasound image analysis. We present and compare local explanations for selected observations in the test set. We also present global explanations generated from these techniques that explain the behavior of the entire model. Additionally, we assess the quality of the explanations, using suggested properties in the literature. Finally, we discuss the results of this comparative study and suggest directions for future work.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model Agnostic Explainability Techniques in Ultrasound Image Analysis\",\"authors\":\"Nicoletta Prentzas, Marios Pitsiali, E. Kyriacou, Andrew N. Nicolaides, A. Kakas, C. Pattichis\",\"doi\":\"10.1109/BIBE52308.2021.9635199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current adoption of Medical Artificial Intelligence (AI) solutions in clinical practice suggest that despite its undeniable potential AI is not achieving this potential. A major barrier to its adoption is the lack of transparency and interpretability, and the inability of the system to explain its results. Explainable AI (XAI) is an emerging field in AI that aims to address these barriers, with the development of new or modified algorithms to enable transparency, provide explanations in a way that humans can understand and foster trust. Numerous XAI techniques have been proposed in the literature, commonly classified as model-agnostic or model-specific. In this study, we examine the application of four model-agnostic XAI techniques (LIME, SHAP, ANCHORS, inTrees) to an XGBoost classifier trained on real-life medical data for the prediction of high-risk asymptomatic carotid plaques based on ultrasound image analysis. We present and compare local explanations for selected observations in the test set. We also present global explanations generated from these techniques that explain the behavior of the entire model. Additionally, we assess the quality of the explanations, using suggested properties in the literature. Finally, we discuss the results of this comparative study and suggest directions for future work.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前在临床实践中采用医疗人工智能(AI)解决方案表明,尽管人工智能具有不可否认的潜力,但它并没有实现这一潜力。采用该系统的一个主要障碍是缺乏透明度和可解释性,以及该系统无法解释其结果。可解释人工智能(XAI)是人工智能的一个新兴领域,旨在通过开发新的或修改的算法来解决这些障碍,以实现透明度,以人类可以理解和培养信任的方式提供解释。文献中提出了许多XAI技术,通常被归类为模型不可知或模型特定。在这项研究中,我们研究了四种模型不可知的XAI技术(LIME, SHAP, ANCHORS, inTrees)在XGBoost分类器上的应用,该分类器基于真实医疗数据进行训练,用于基于超声图像分析预测高风险无症状颈动脉斑块。我们提出并比较了测试集中选定观测值的局部解释。我们还提出了由这些技术产生的解释整个模型行为的全局解释。此外,我们使用文献中建议的属性来评估解释的质量。最后,我们讨论了本比较研究的结果,并提出了未来工作的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Agnostic Explainability Techniques in Ultrasound Image Analysis
The current adoption of Medical Artificial Intelligence (AI) solutions in clinical practice suggest that despite its undeniable potential AI is not achieving this potential. A major barrier to its adoption is the lack of transparency and interpretability, and the inability of the system to explain its results. Explainable AI (XAI) is an emerging field in AI that aims to address these barriers, with the development of new or modified algorithms to enable transparency, provide explanations in a way that humans can understand and foster trust. Numerous XAI techniques have been proposed in the literature, commonly classified as model-agnostic or model-specific. In this study, we examine the application of four model-agnostic XAI techniques (LIME, SHAP, ANCHORS, inTrees) to an XGBoost classifier trained on real-life medical data for the prediction of high-risk asymptomatic carotid plaques based on ultrasound image analysis. We present and compare local explanations for selected observations in the test set. We also present global explanations generated from these techniques that explain the behavior of the entire model. Additionally, we assess the quality of the explanations, using suggested properties in the literature. Finally, we discuss the results of this comparative study and suggest directions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信