{"title":"基于重复特征的鲁棒视觉闭环检测","authors":"Seongwon Lee, HyungGi Jo, H. Cho, Euntai Kim","doi":"10.1109/URAI.2018.8441872","DOIUrl":null,"url":null,"abstract":"Loop closure detection problem is an essential issue in simultaneous localization and mapping (SLAM) problem. In particular, visual loop closure detection, which using a visual sensor, should be robust to environmental conditions like confusion caused by repeated structures. In this paper, we propose a robust visual loop closure detection algorithm through restrained repetitive features observed in repeating structures. The proposed algorithm aims to extract bag of visual words (BoVW) for each image frame with RootSIFT extraction, improve it by restrain dominantly repetitive features, calculates histogram similarity score with histogram comparing method and finally decides loop closure pair(s). Experimental results show that the proposed algorithm robustly performs loop closure detection.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Visual Loop Closure Detection with Repetitive Features\",\"authors\":\"Seongwon Lee, HyungGi Jo, H. Cho, Euntai Kim\",\"doi\":\"10.1109/URAI.2018.8441872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Loop closure detection problem is an essential issue in simultaneous localization and mapping (SLAM) problem. In particular, visual loop closure detection, which using a visual sensor, should be robust to environmental conditions like confusion caused by repeated structures. In this paper, we propose a robust visual loop closure detection algorithm through restrained repetitive features observed in repeating structures. The proposed algorithm aims to extract bag of visual words (BoVW) for each image frame with RootSIFT extraction, improve it by restrain dominantly repetitive features, calculates histogram similarity score with histogram comparing method and finally decides loop closure pair(s). Experimental results show that the proposed algorithm robustly performs loop closure detection.\",\"PeriodicalId\":347727,\"journal\":{\"name\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2018.8441872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8441872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Visual Loop Closure Detection with Repetitive Features
Loop closure detection problem is an essential issue in simultaneous localization and mapping (SLAM) problem. In particular, visual loop closure detection, which using a visual sensor, should be robust to environmental conditions like confusion caused by repeated structures. In this paper, we propose a robust visual loop closure detection algorithm through restrained repetitive features observed in repeating structures. The proposed algorithm aims to extract bag of visual words (BoVW) for each image frame with RootSIFT extraction, improve it by restrain dominantly repetitive features, calculates histogram similarity score with histogram comparing method and finally decides loop closure pair(s). Experimental results show that the proposed algorithm robustly performs loop closure detection.