一类先验概率的变化检测器

P. Gonçalves, Roberto S. M. Barros, S. Chartier
{"title":"一类先验概率的变化检测器","authors":"P. Gonçalves, Roberto S. M. Barros, S. Chartier","doi":"10.1109/SSCI47803.2020.9308146","DOIUrl":null,"url":null,"abstract":"The majority of current concept drift detectors focus on the results of a base classifier. But if there is a change in the data distribution or in the prior probability of the classes, these methods are unable to identify these types of change. This paper proposes Prior Probability Change Detection Method (PCDM), a method suited to identify changes in the prior probabilities of the classes. It works by associating traditional drift detection methods to analyze how the instances belonging to each class changes in time. Experiments in 24 artificial datasets of six generators indicate that PCDM presented the best results considering the sensitivity metric, the Matthews Correlation Coefficient, and the F1 score without losing any performance in the specificity metric.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Change Detector for Prior Probabilities of Classes\",\"authors\":\"P. Gonçalves, Roberto S. M. Barros, S. Chartier\",\"doi\":\"10.1109/SSCI47803.2020.9308146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of current concept drift detectors focus on the results of a base classifier. But if there is a change in the data distribution or in the prior probability of the classes, these methods are unable to identify these types of change. This paper proposes Prior Probability Change Detection Method (PCDM), a method suited to identify changes in the prior probabilities of the classes. It works by associating traditional drift detection methods to analyze how the instances belonging to each class changes in time. Experiments in 24 artificial datasets of six generators indicate that PCDM presented the best results considering the sensitivity metric, the Matthews Correlation Coefficient, and the F1 score without losing any performance in the specificity metric.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"23 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前大多数概念漂移检测器都集中在基分类器的结果上。但是,如果数据分布或类的先验概率发生了变化,这些方法就无法识别这些类型的变化。本文提出了先验概率变化检测方法(PCDM),一种适合于识别类的先验概率变化的方法。它通过关联传统的漂移检测方法来分析属于每个类的实例如何随时间变化。在6个发电机的24个人工数据集上进行的实验表明,在不影响特异性指标的情况下,PCDM在灵敏度指标、马修斯相关系数和F1评分方面表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Change Detector for Prior Probabilities of Classes
The majority of current concept drift detectors focus on the results of a base classifier. But if there is a change in the data distribution or in the prior probability of the classes, these methods are unable to identify these types of change. This paper proposes Prior Probability Change Detection Method (PCDM), a method suited to identify changes in the prior probabilities of the classes. It works by associating traditional drift detection methods to analyze how the instances belonging to each class changes in time. Experiments in 24 artificial datasets of six generators indicate that PCDM presented the best results considering the sensitivity metric, the Matthews Correlation Coefficient, and the F1 score without losing any performance in the specificity metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信