波动方程的一维逆散射问题

N. Grinberg
{"title":"波动方程的一维逆散射问题","authors":"N. Grinberg","doi":"10.1070/SM1991V070N02ABEH001386","DOIUrl":null,"url":null,"abstract":"A constructive method is given for solving the inverse scattering problem for the wave equation on the line and half-line. The slowness function is assumed to have a derivative everywhere except at a finite number of points, and both it and its derivative are assumed to be functions of bounded variation. In addition, the slowness n(x) is required to tend to 1 sufficiently rapidly as x→∞. In this case the slowness function can be reconstructed from the reflection coefficient.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"37 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"THE ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM FOR THE WAVE EQUATION\",\"authors\":\"N. Grinberg\",\"doi\":\"10.1070/SM1991V070N02ABEH001386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A constructive method is given for solving the inverse scattering problem for the wave equation on the line and half-line. The slowness function is assumed to have a derivative everywhere except at a finite number of points, and both it and its derivative are assumed to be functions of bounded variation. In addition, the slowness n(x) is required to tend to 1 sufficiently rapidly as x→∞. In this case the slowness function can be reconstructed from the reflection coefficient.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"37 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1991V070N02ABEH001386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1991V070N02ABEH001386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

给出了求解直线和半直线上波动方程逆散射问题的一种构造方法。假设慢度函数除了在有限的点上有导数外,在任何地方都有导数,并且假设慢度函数及其导数都是有界变化的函数。此外,要求慢度n(x)在x→∞时足够快地趋于1。在这种情况下,慢度函数可以由反射系数重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM FOR THE WAVE EQUATION
A constructive method is given for solving the inverse scattering problem for the wave equation on the line and half-line. The slowness function is assumed to have a derivative everywhere except at a finite number of points, and both it and its derivative are assumed to be functions of bounded variation. In addition, the slowness n(x) is required to tend to 1 sufficiently rapidly as x→∞. In this case the slowness function can be reconstructed from the reflection coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信