{"title":"模块化蛇形机器人的循环侧绕运动生成","authors":"Sajjad Manzoor, Youngjin Choi","doi":"10.1109/ROBIO.2017.8324624","DOIUrl":null,"url":null,"abstract":"In this paper we propose an algorithm for the neural oscillator-based side-winding recurring motion generation in a newly constructed modular snake robot. The snake robot created and then used for experimental purposes is subdivided into body, neck, head and tail modules. It is equipped with active joints. Each body module is provided with two rotary motor to generate yaw and pitch motion. While the neck module is provided with two rotary motor generate pitch motion. In order to move the snake with side winding motion a network of neural oscillators is used to bend snake robot into a two dimension sine-wave. In this way only a few points on the robot body touches the surface on which it is moving. These contact points are propagated from tail to head by using the proposed algorithm. Finally experiment is conducted to confirm the worthiness of snake robot and the authenticity of the proposed algorithm in order to generate side-winding motion generation.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recurring side-winding motion generation for modular snake robot\",\"authors\":\"Sajjad Manzoor, Youngjin Choi\",\"doi\":\"10.1109/ROBIO.2017.8324624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an algorithm for the neural oscillator-based side-winding recurring motion generation in a newly constructed modular snake robot. The snake robot created and then used for experimental purposes is subdivided into body, neck, head and tail modules. It is equipped with active joints. Each body module is provided with two rotary motor to generate yaw and pitch motion. While the neck module is provided with two rotary motor generate pitch motion. In order to move the snake with side winding motion a network of neural oscillators is used to bend snake robot into a two dimension sine-wave. In this way only a few points on the robot body touches the surface on which it is moving. These contact points are propagated from tail to head by using the proposed algorithm. Finally experiment is conducted to confirm the worthiness of snake robot and the authenticity of the proposed algorithm in order to generate side-winding motion generation.\",\"PeriodicalId\":197159,\"journal\":{\"name\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2017.8324624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recurring side-winding motion generation for modular snake robot
In this paper we propose an algorithm for the neural oscillator-based side-winding recurring motion generation in a newly constructed modular snake robot. The snake robot created and then used for experimental purposes is subdivided into body, neck, head and tail modules. It is equipped with active joints. Each body module is provided with two rotary motor to generate yaw and pitch motion. While the neck module is provided with two rotary motor generate pitch motion. In order to move the snake with side winding motion a network of neural oscillators is used to bend snake robot into a two dimension sine-wave. In this way only a few points on the robot body touches the surface on which it is moving. These contact points are propagated from tail to head by using the proposed algorithm. Finally experiment is conducted to confirm the worthiness of snake robot and the authenticity of the proposed algorithm in order to generate side-winding motion generation.