{"title":"TGF-β1过表达:老年人舒张充盈功能障碍的一种机制","authors":"D. Larson, R. Ingham, Cory M. Alwardt, Bo Yang","doi":"10.1051/ject/200436169","DOIUrl":null,"url":null,"abstract":"The prevalence of cardiovascular disease in the United States dramatically increases with age. A hallmark feature of the aged myocardium is increased fibrosis resulting in diastolic dysfunction. Moreover, the survival of patients subsequent to a myocardial infarction is inversely related to age because of a certain extent to maladaptive remodeling mediated by cardiac fibroblasts. Our hypothesis is that cardiac fibroblast (CF) dysfunction results in overexpressed TGF-β1 leading to increased cardiac collagen content in the aged population. TGF-β1 stimulates the synthesis of the extracellular matrix proteins, including collagen in the cardiac tissues. The RT–PCR analysis of mRNA expression of TGF-β1 of the CF was increased by 43% in the aged mice as compared to the younger. The stiffness of the left ventricle is expressed with the slope of the end-diastolic pressure-volume relationship parameter, (mmHg/L). In a mouse model, we demonstrated that was 0.30 ± 0.05 in the young as compared to 0.52 ± 0.10 in the aged (p < .05). The ventricular stiffness was associated with the myocardial collagen content; namely, young versus the aged was 9.5 ± 4.0 as compared to 16.4 ± 2.3% of total protein, respectively (p < .05). In conclusion, the gene structure–function relationships support our hypothesis that cardiac fibroblast disregulation contributes to diastolic filling dysfunction in elderly persons. These data provide a potential contributory mechanism for diastolic dysfunction that may be vital in caring for the aged open-heart surgical patient.","PeriodicalId":309024,"journal":{"name":"The Journal of ExtraCorporeal Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"TGF-β1 Overexpression: A Mechanism of Diastolic Filling Dysfunction in the Aged Population\",\"authors\":\"D. Larson, R. Ingham, Cory M. Alwardt, Bo Yang\",\"doi\":\"10.1051/ject/200436169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of cardiovascular disease in the United States dramatically increases with age. A hallmark feature of the aged myocardium is increased fibrosis resulting in diastolic dysfunction. Moreover, the survival of patients subsequent to a myocardial infarction is inversely related to age because of a certain extent to maladaptive remodeling mediated by cardiac fibroblasts. Our hypothesis is that cardiac fibroblast (CF) dysfunction results in overexpressed TGF-β1 leading to increased cardiac collagen content in the aged population. TGF-β1 stimulates the synthesis of the extracellular matrix proteins, including collagen in the cardiac tissues. The RT–PCR analysis of mRNA expression of TGF-β1 of the CF was increased by 43% in the aged mice as compared to the younger. The stiffness of the left ventricle is expressed with the slope of the end-diastolic pressure-volume relationship parameter, (mmHg/L). In a mouse model, we demonstrated that was 0.30 ± 0.05 in the young as compared to 0.52 ± 0.10 in the aged (p < .05). The ventricular stiffness was associated with the myocardial collagen content; namely, young versus the aged was 9.5 ± 4.0 as compared to 16.4 ± 2.3% of total protein, respectively (p < .05). In conclusion, the gene structure–function relationships support our hypothesis that cardiac fibroblast disregulation contributes to diastolic filling dysfunction in elderly persons. These data provide a potential contributory mechanism for diastolic dysfunction that may be vital in caring for the aged open-heart surgical patient.\",\"PeriodicalId\":309024,\"journal\":{\"name\":\"The Journal of ExtraCorporeal Technology\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of ExtraCorporeal Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ject/200436169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of ExtraCorporeal Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ject/200436169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TGF-β1 Overexpression: A Mechanism of Diastolic Filling Dysfunction in the Aged Population
The prevalence of cardiovascular disease in the United States dramatically increases with age. A hallmark feature of the aged myocardium is increased fibrosis resulting in diastolic dysfunction. Moreover, the survival of patients subsequent to a myocardial infarction is inversely related to age because of a certain extent to maladaptive remodeling mediated by cardiac fibroblasts. Our hypothesis is that cardiac fibroblast (CF) dysfunction results in overexpressed TGF-β1 leading to increased cardiac collagen content in the aged population. TGF-β1 stimulates the synthesis of the extracellular matrix proteins, including collagen in the cardiac tissues. The RT–PCR analysis of mRNA expression of TGF-β1 of the CF was increased by 43% in the aged mice as compared to the younger. The stiffness of the left ventricle is expressed with the slope of the end-diastolic pressure-volume relationship parameter, (mmHg/L). In a mouse model, we demonstrated that was 0.30 ± 0.05 in the young as compared to 0.52 ± 0.10 in the aged (p < .05). The ventricular stiffness was associated with the myocardial collagen content; namely, young versus the aged was 9.5 ± 4.0 as compared to 16.4 ± 2.3% of total protein, respectively (p < .05). In conclusion, the gene structure–function relationships support our hypothesis that cardiac fibroblast disregulation contributes to diastolic filling dysfunction in elderly persons. These data provide a potential contributory mechanism for diastolic dysfunction that may be vital in caring for the aged open-heart surgical patient.