{"title":"最大公共子序列算法","authors":"Y. Sakai","doi":"10.4230/LIPIcs.CPM.2018.1","DOIUrl":null,"url":null,"abstract":"A common subsequence of two strings is maximal, if inserting any character into the subsequence can no longer yield a common subsequence of the two strings. The present article proposes a (sub)linearithmic-time, linear-space algorithm for finding a maximal common subsequence of two strings and also proposes a linear-time algorithm for determining if a common subsequence of two strings is maximal.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Maximal Common Subsequence Algorithms\",\"authors\":\"Y. Sakai\",\"doi\":\"10.4230/LIPIcs.CPM.2018.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common subsequence of two strings is maximal, if inserting any character into the subsequence can no longer yield a common subsequence of the two strings. The present article proposes a (sub)linearithmic-time, linear-space algorithm for finding a maximal common subsequence of two strings and also proposes a linear-time algorithm for determining if a common subsequence of two strings is maximal.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2018.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2018.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A common subsequence of two strings is maximal, if inserting any character into the subsequence can no longer yield a common subsequence of the two strings. The present article proposes a (sub)linearithmic-time, linear-space algorithm for finding a maximal common subsequence of two strings and also proposes a linear-time algorithm for determining if a common subsequence of two strings is maximal.