大型活动视频集合中动作层次的无监督发现

P. Ahammad, Chuohao Yeo, K. Ramchandran, S. Sastry
{"title":"大型活动视频集合中动作层次的无监督发现","authors":"P. Ahammad, Chuohao Yeo, K. Ramchandran, S. Sastry","doi":"10.1109/MMSP.2007.4412903","DOIUrl":null,"url":null,"abstract":"Given a large collection of videos containing activities, we investigate the problem of organizing it in an unsupervised fashion into a hierarchy based on the similarity of actions embedded in the videos. We use spatio-temporal volumes of filtered motion vectors to compute appearance-invariant action similarity measures efficiently -and use these similarity measures in hierarchical agglomerative clustering to organize videos into a hierarchy such that neighboring nodes contain similar actions. This naturally leads to a simple automatic scheme for selecting videos of representative actions (exemplars) from the database and for efficiently indexing the whole database. We compute a performance metric on the hierarchical structure to evaluate goodness of the estimated hierarchy, and show that this metric has potential for predicting the clustering performance of various joining criteria used in building hierarchies. Our results show that perceptually meaningful hierarchies can be constructed based on action similarities with minimal user supervision, while providing favorable clustering performance and retrieval performance.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unsupervised Discovery of Action Hierarchies in Large Collections of Activity Videos\",\"authors\":\"P. Ahammad, Chuohao Yeo, K. Ramchandran, S. Sastry\",\"doi\":\"10.1109/MMSP.2007.4412903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a large collection of videos containing activities, we investigate the problem of organizing it in an unsupervised fashion into a hierarchy based on the similarity of actions embedded in the videos. We use spatio-temporal volumes of filtered motion vectors to compute appearance-invariant action similarity measures efficiently -and use these similarity measures in hierarchical agglomerative clustering to organize videos into a hierarchy such that neighboring nodes contain similar actions. This naturally leads to a simple automatic scheme for selecting videos of representative actions (exemplars) from the database and for efficiently indexing the whole database. We compute a performance metric on the hierarchical structure to evaluate goodness of the estimated hierarchy, and show that this metric has potential for predicting the clustering performance of various joining criteria used in building hierarchies. Our results show that perceptually meaningful hierarchies can be constructed based on action similarities with minimal user supervision, while providing favorable clustering performance and retrieval performance.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给定大量包含活动的视频集合,我们研究了基于视频中嵌入的动作的相似性,以无监督的方式将其组织成层次结构的问题。我们使用过滤后的运动向量的时空体积来有效地计算外观不变的动作相似性度量,并在分层聚集聚类中使用这些相似性度量来将视频组织成一个层次结构,以便相邻节点包含相似的动作。这自然会产生一个简单的自动方案,用于从数据库中选择代表性动作的视频(示例),并有效地索引整个数据库。我们在层次结构上计算了一个性能指标来评估估计的层次结构的优度,并表明该指标具有预测在构建层次结构中使用的各种连接标准的聚类性能的潜力。我们的研究结果表明,在最小的用户监督下,可以基于动作相似性构建具有感知意义的层次结构,同时提供良好的聚类性能和检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Discovery of Action Hierarchies in Large Collections of Activity Videos
Given a large collection of videos containing activities, we investigate the problem of organizing it in an unsupervised fashion into a hierarchy based on the similarity of actions embedded in the videos. We use spatio-temporal volumes of filtered motion vectors to compute appearance-invariant action similarity measures efficiently -and use these similarity measures in hierarchical agglomerative clustering to organize videos into a hierarchy such that neighboring nodes contain similar actions. This naturally leads to a simple automatic scheme for selecting videos of representative actions (exemplars) from the database and for efficiently indexing the whole database. We compute a performance metric on the hierarchical structure to evaluate goodness of the estimated hierarchy, and show that this metric has potential for predicting the clustering performance of various joining criteria used in building hierarchies. Our results show that perceptually meaningful hierarchies can be constructed based on action similarities with minimal user supervision, while providing favorable clustering performance and retrieval performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信