Panpan Li, Yunyi Xie, Xinyao Xu, Jiajun Zhou, Qi Xuan
{"title":"基于图神经网络的以太坊网络钓鱼欺诈检测","authors":"Panpan Li, Yunyi Xie, Xinyao Xu, Jiajun Zhou, Qi Xuan","doi":"10.48550/arXiv.2204.08194","DOIUrl":null,"url":null,"abstract":"Blockchain has widespread applications in the financial field but has also attracted increasing cybercrimes. Recently, phishing fraud has emerged as a major threat to blockchain security, calling for the development of effective regulatory strategies. Nowadays network science has been widely used in modeling Ethereum transaction data, further introducing the network representation learning technology to analyze the transaction patterns. In this paper, we consider phishing detection as a graph classification task and propose an end-to-end Phishing Detection Graph Neural Network framework (PDGNN). Specifically, we first construct a lightweight Ethereum transaction network and extract transaction subgraphs of collected phishing accounts. Then we propose an end-to-end detection model based on Chebyshev-GCN to precisely distinguish between normal and phishing accounts. Extensive experiments on five Ethereum datasets demonstrate that our PDGNN significantly outperforms general phishing detection methods and scales well in large transaction networks.","PeriodicalId":407011,"journal":{"name":"International Conference on Blockchain and Trustworthy Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Phishing Fraud Detection on Ethereum using Graph Neural Network\",\"authors\":\"Panpan Li, Yunyi Xie, Xinyao Xu, Jiajun Zhou, Qi Xuan\",\"doi\":\"10.48550/arXiv.2204.08194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchain has widespread applications in the financial field but has also attracted increasing cybercrimes. Recently, phishing fraud has emerged as a major threat to blockchain security, calling for the development of effective regulatory strategies. Nowadays network science has been widely used in modeling Ethereum transaction data, further introducing the network representation learning technology to analyze the transaction patterns. In this paper, we consider phishing detection as a graph classification task and propose an end-to-end Phishing Detection Graph Neural Network framework (PDGNN). Specifically, we first construct a lightweight Ethereum transaction network and extract transaction subgraphs of collected phishing accounts. Then we propose an end-to-end detection model based on Chebyshev-GCN to precisely distinguish between normal and phishing accounts. Extensive experiments on five Ethereum datasets demonstrate that our PDGNN significantly outperforms general phishing detection methods and scales well in large transaction networks.\",\"PeriodicalId\":407011,\"journal\":{\"name\":\"International Conference on Blockchain and Trustworthy Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Blockchain and Trustworthy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.08194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Blockchain and Trustworthy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phishing Fraud Detection on Ethereum using Graph Neural Network
Blockchain has widespread applications in the financial field but has also attracted increasing cybercrimes. Recently, phishing fraud has emerged as a major threat to blockchain security, calling for the development of effective regulatory strategies. Nowadays network science has been widely used in modeling Ethereum transaction data, further introducing the network representation learning technology to analyze the transaction patterns. In this paper, we consider phishing detection as a graph classification task and propose an end-to-end Phishing Detection Graph Neural Network framework (PDGNN). Specifically, we first construct a lightweight Ethereum transaction network and extract transaction subgraphs of collected phishing accounts. Then we propose an end-to-end detection model based on Chebyshev-GCN to precisely distinguish between normal and phishing accounts. Extensive experiments on five Ethereum datasets demonstrate that our PDGNN significantly outperforms general phishing detection methods and scales well in large transaction networks.