用于虚拟现实的预测性头部跟踪

Emad W. Saad, T. Caudell, D. Wunsch
{"title":"用于虚拟现实的预测性头部跟踪","authors":"Emad W. Saad, T. Caudell, D. Wunsch","doi":"10.1109/IJCNN.1999.830785","DOIUrl":null,"url":null,"abstract":"In virtual reality (VR), head movement is tracked through inertial and optical sensors. Computation and communication times result in delays between measurements and updating of the new frame in the head mounted display(HMD). These delays result in problems, including motion sickness. We use recurrent and time delay neural networks to predict the head location and use it to calculate the new frame. A predictability analysis is used in designing the prediction system.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predictive head tracking for virtual reality\",\"authors\":\"Emad W. Saad, T. Caudell, D. Wunsch\",\"doi\":\"10.1109/IJCNN.1999.830785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In virtual reality (VR), head movement is tracked through inertial and optical sensors. Computation and communication times result in delays between measurements and updating of the new frame in the head mounted display(HMD). These delays result in problems, including motion sickness. We use recurrent and time delay neural networks to predict the head location and use it to calculate the new frame. A predictability analysis is used in designing the prediction system.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.830785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.830785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在虚拟现实(VR)中,头部运动通过惯性和光学传感器进行跟踪。在头戴式显示器(HMD)中,计算和通信时间导致测量和更新新帧之间的延迟。这些延误会导致一些问题,包括晕动病。我们使用递归和延时神经网络来预测头部位置,并利用它来计算新的帧。在设计预测系统时采用了可预测性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive head tracking for virtual reality
In virtual reality (VR), head movement is tracked through inertial and optical sensors. Computation and communication times result in delays between measurements and updating of the new frame in the head mounted display(HMD). These delays result in problems, including motion sickness. We use recurrent and time delay neural networks to predict the head location and use it to calculate the new frame. A predictability analysis is used in designing the prediction system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信