节能无线传感器网络的元启发式多跳聚类优化

Vincent Chung, N. Tuah, Kit Guan Lim, M. K. Tan, I. Saad, K. Teo
{"title":"节能无线传感器网络的元启发式多跳聚类优化","authors":"Vincent Chung, N. Tuah, Kit Guan Lim, M. K. Tan, I. Saad, K. Teo","doi":"10.1109/IICAIET49801.2020.9257871","DOIUrl":null,"url":null,"abstract":"Energy-efficient optimization algorithm in wireless sensor network (WSN) is often based on solely cluster routing or multi-hop routing. The cluster optimization algorithm will form a cluster network by dividing the sensor nodes into few clusters where each cluster has a cluster head (CH) for data collection. On the other hand, multi-hop optimization algorithm will form a multi-hop network by transmitting data to base station (BS) through data multi-hopping between sensor nodes. However, cluster optimization algorithm suffers from the overburdens of CH nodes, while multi-hop optimization algorithm suffers from the overburdens of nodes which are near to the BS. Therefore, Genetic Algorithm-Cuckoo Search (GACS) is proposed and developed based on the multi-hop clustering model in this paper. GACS optimizes both intra-cluster and inter-cluster communications to enhance energy efficiency in WSN, extending the network lifetime. Based on the performance evaluation, GACS outperforms both Genetic Algorithm (GA)-based cluster optimization algorithm and Cuckoo Search (CS)-based multi-hop optimization algorithm.","PeriodicalId":300885,"journal":{"name":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metaheuristic Multi-Hop Clustering Optimization for Energy-Efficient Wireless Sensor Network\",\"authors\":\"Vincent Chung, N. Tuah, Kit Guan Lim, M. K. Tan, I. Saad, K. Teo\",\"doi\":\"10.1109/IICAIET49801.2020.9257871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficient optimization algorithm in wireless sensor network (WSN) is often based on solely cluster routing or multi-hop routing. The cluster optimization algorithm will form a cluster network by dividing the sensor nodes into few clusters where each cluster has a cluster head (CH) for data collection. On the other hand, multi-hop optimization algorithm will form a multi-hop network by transmitting data to base station (BS) through data multi-hopping between sensor nodes. However, cluster optimization algorithm suffers from the overburdens of CH nodes, while multi-hop optimization algorithm suffers from the overburdens of nodes which are near to the BS. Therefore, Genetic Algorithm-Cuckoo Search (GACS) is proposed and developed based on the multi-hop clustering model in this paper. GACS optimizes both intra-cluster and inter-cluster communications to enhance energy efficiency in WSN, extending the network lifetime. Based on the performance evaluation, GACS outperforms both Genetic Algorithm (GA)-based cluster optimization algorithm and Cuckoo Search (CS)-based multi-hop optimization algorithm.\",\"PeriodicalId\":300885,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET49801.2020.9257871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET49801.2020.9257871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

无线传感器网络中的节能优化算法通常基于单簇路由或多跳路由。聚类优化算法将传感器节点分成几个簇,每个簇有一个簇头(CH)来收集数据,从而形成一个聚类网络。另一方面,多跳优化算法将通过传感器节点之间的数据多跳向基站(BS)传输数据,形成多跳网络。但聚类优化算法存在CH节点的过载问题,而多跳优化算法存在靠近BS节点的过载问题。为此,本文提出并发展了基于多跳聚类模型的遗传算法-布谷鸟搜索(GACS)。GACS优化了集群内和集群间的通信,提高了WSN的能源效率,延长了网络寿命。基于性能评价,GACS优于基于遗传算法(GA)的聚类优化算法和基于布谷鸟搜索(CS)的多跳优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metaheuristic Multi-Hop Clustering Optimization for Energy-Efficient Wireless Sensor Network
Energy-efficient optimization algorithm in wireless sensor network (WSN) is often based on solely cluster routing or multi-hop routing. The cluster optimization algorithm will form a cluster network by dividing the sensor nodes into few clusters where each cluster has a cluster head (CH) for data collection. On the other hand, multi-hop optimization algorithm will form a multi-hop network by transmitting data to base station (BS) through data multi-hopping between sensor nodes. However, cluster optimization algorithm suffers from the overburdens of CH nodes, while multi-hop optimization algorithm suffers from the overburdens of nodes which are near to the BS. Therefore, Genetic Algorithm-Cuckoo Search (GACS) is proposed and developed based on the multi-hop clustering model in this paper. GACS optimizes both intra-cluster and inter-cluster communications to enhance energy efficiency in WSN, extending the network lifetime. Based on the performance evaluation, GACS outperforms both Genetic Algorithm (GA)-based cluster optimization algorithm and Cuckoo Search (CS)-based multi-hop optimization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信