供应链大爆炸的规划:生产指标的快速对冲

D. L. Woodruff, S. Voß
{"title":"供应链大爆炸的规划:生产指标的快速对冲","authors":"D. L. Woodruff, S. Voß","doi":"10.1109/HICSS.2006.380","DOIUrl":null,"url":null,"abstract":"We concern ourselves with the process of making optimized production planning decisions in the face of low frequency, high impact uncertainty, which takes the form of a small number of discrete scenarios. Computational results provide evidence that the computational effort for the full stochastic mixed integer problem can be reduced by first solving scenario sub-problems and then blending them to find values for some of the binary variables.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Planning for a Big Bang in a Supply Chain: Fast Hedging for Production Indicators\",\"authors\":\"D. L. Woodruff, S. Voß\",\"doi\":\"10.1109/HICSS.2006.380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We concern ourselves with the process of making optimized production planning decisions in the face of low frequency, high impact uncertainty, which takes the form of a small number of discrete scenarios. Computational results provide evidence that the computational effort for the full stochastic mixed integer problem can be reduced by first solving scenario sub-problems and then blending them to find values for some of the binary variables.\",\"PeriodicalId\":432250,\"journal\":{\"name\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2006.380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们关注的是在面对低频率、高影响的不确定性时做出优化生产计划决策的过程,这种不确定性以少量离散情景的形式出现。计算结果表明,首先求解场景子问题,然后将它们混合以求得某些二元变量的值,可以减少全随机混合整数问题的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planning for a Big Bang in a Supply Chain: Fast Hedging for Production Indicators
We concern ourselves with the process of making optimized production planning decisions in the face of low frequency, high impact uncertainty, which takes the form of a small number of discrete scenarios. Computational results provide evidence that the computational effort for the full stochastic mixed integer problem can be reduced by first solving scenario sub-problems and then blending them to find values for some of the binary variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信