{"title":"社交媒体分析预测用户抑郁程度","authors":"Mohd. Shahid Husain","doi":"10.4018/978-1-5225-8567-1.CH011","DOIUrl":null,"url":null,"abstract":"As people around the world are spending increasing amounts of time online, the question of how online experiences are linked to health and wellbeing is essential. Depression has become a public health concern around the world. Traditional methods for detecting depression rely on self-report techniques, which suffer from inefficient data collection and processing. Research shows that symptoms linked to mental illness are detectable on social media like Twitter, Facebook, and web forums, and automatic methods are more and more able to locate inactivity and other mental disease. The pattern of social media usage can be very helpful to predict the mental state of a user. This chapter also presents how activities on Facebook are associated with the depressive states of users. Based on online logs, we can predict the mental state of users.","PeriodicalId":374218,"journal":{"name":"Early Detection of Neurological Disorders Using Machine Learning Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Social Media Analytics to Predict Depression Level in the Users\",\"authors\":\"Mohd. Shahid Husain\",\"doi\":\"10.4018/978-1-5225-8567-1.CH011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As people around the world are spending increasing amounts of time online, the question of how online experiences are linked to health and wellbeing is essential. Depression has become a public health concern around the world. Traditional methods for detecting depression rely on self-report techniques, which suffer from inefficient data collection and processing. Research shows that symptoms linked to mental illness are detectable on social media like Twitter, Facebook, and web forums, and automatic methods are more and more able to locate inactivity and other mental disease. The pattern of social media usage can be very helpful to predict the mental state of a user. This chapter also presents how activities on Facebook are associated with the depressive states of users. Based on online logs, we can predict the mental state of users.\",\"PeriodicalId\":374218,\"journal\":{\"name\":\"Early Detection of Neurological Disorders Using Machine Learning Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Early Detection of Neurological Disorders Using Machine Learning Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-8567-1.CH011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Early Detection of Neurological Disorders Using Machine Learning Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-8567-1.CH011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Social Media Analytics to Predict Depression Level in the Users
As people around the world are spending increasing amounts of time online, the question of how online experiences are linked to health and wellbeing is essential. Depression has become a public health concern around the world. Traditional methods for detecting depression rely on self-report techniques, which suffer from inefficient data collection and processing. Research shows that symptoms linked to mental illness are detectable on social media like Twitter, Facebook, and web forums, and automatic methods are more and more able to locate inactivity and other mental disease. The pattern of social media usage can be very helpful to predict the mental state of a user. This chapter also presents how activities on Facebook are associated with the depressive states of users. Based on online logs, we can predict the mental state of users.