基于主成分分析的Contourlet变换掌纹识别

M. Sharkas, I. E. Rube, M. A. Mostafa
{"title":"基于主成分分析的Contourlet变换掌纹识别","authors":"M. Sharkas, I. E. Rube, M. A. Mostafa","doi":"10.1109/CICSyN.2010.61","DOIUrl":null,"url":null,"abstract":"In this paper two techniques for palmprint recognition are suggested and compared. Palmprint include principal lines, wrinkles and ridges which contain very important features essential for recognition. The Contourlet Transform (CT) is a multiresolution and multidirection transform which can be effective in capturing the palm features. The first technique extracts the edges from the palm images and then performs the CT or the Discrete Wavelet Transform (DWT) on the edge extracted images. The sub-band images are divided into M*M non-overlapping blocks. The energy of each block is calculated and normalized to form a feature vector. The second technique employs the principal component analysis PCA where the approximation images are input to it for dimensionality reduction and to produce the eigen palms. Features extracted from both techniques are tested and compared where it was found that the best achieved recognition rate is about 94% when combining the results of both techniques using the CT.","PeriodicalId":358023,"journal":{"name":"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Contourlet Transform with the Principal Component Analysis for Palmprint Recognition\",\"authors\":\"M. Sharkas, I. E. Rube, M. A. Mostafa\",\"doi\":\"10.1109/CICSyN.2010.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper two techniques for palmprint recognition are suggested and compared. Palmprint include principal lines, wrinkles and ridges which contain very important features essential for recognition. The Contourlet Transform (CT) is a multiresolution and multidirection transform which can be effective in capturing the palm features. The first technique extracts the edges from the palm images and then performs the CT or the Discrete Wavelet Transform (DWT) on the edge extracted images. The sub-band images are divided into M*M non-overlapping blocks. The energy of each block is calculated and normalized to form a feature vector. The second technique employs the principal component analysis PCA where the approximation images are input to it for dimensionality reduction and to produce the eigen palms. Features extracted from both techniques are tested and compared where it was found that the best achieved recognition rate is about 94% when combining the results of both techniques using the CT.\",\"PeriodicalId\":358023,\"journal\":{\"name\":\"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICSyN.2010.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICSyN.2010.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出并比较了两种掌纹识别技术。掌纹包括主纹、皱纹和脊纹,它们包含了识别的重要特征。轮廓波变换(Contourlet Transform, CT)是一种多分辨率、多方向的变换,可以有效地捕获掌纹特征。第一种方法是从手掌图像中提取边缘,然后对提取的边缘图像进行CT或离散小波变换(DWT)。子带图像被划分为M*M个互不重叠的块。计算并归一化每个块的能量,形成一个特征向量。第二种技术采用主成分分析PCA,其中将近似图像输入其中进行降维并产生特征棕榈。从两种技术中提取的特征进行了测试和比较,发现当使用CT结合两种技术的结果时,最佳识别率约为94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Contourlet Transform with the Principal Component Analysis for Palmprint Recognition
In this paper two techniques for palmprint recognition are suggested and compared. Palmprint include principal lines, wrinkles and ridges which contain very important features essential for recognition. The Contourlet Transform (CT) is a multiresolution and multidirection transform which can be effective in capturing the palm features. The first technique extracts the edges from the palm images and then performs the CT or the Discrete Wavelet Transform (DWT) on the edge extracted images. The sub-band images are divided into M*M non-overlapping blocks. The energy of each block is calculated and normalized to form a feature vector. The second technique employs the principal component analysis PCA where the approximation images are input to it for dimensionality reduction and to produce the eigen palms. Features extracted from both techniques are tested and compared where it was found that the best achieved recognition rate is about 94% when combining the results of both techniques using the CT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信