基于深度学习模型的情感分析:对十年僧伽罗语Facebook数据的比较研究

Gihan Weeraprameshwara, Vihanga Jayawickrama, Nisansa de Silva, Yudhanjaya Wijeratne
{"title":"基于深度学习模型的情感分析:对十年僧伽罗语Facebook数据的比较研究","authors":"Gihan Weeraprameshwara, Vihanga Jayawickrama, Nisansa de Silva, Yudhanjaya Wijeratne","doi":"10.1145/3512826.3512829","DOIUrl":null,"url":null,"abstract":"The relationship between Facebook posts and the corresponding reaction feature is an interesting subject to explore and understand. To achieve this end, we test state-of-the-art Sinhala sentiment analysis models against a data set containing a decade worth of Sinhala posts with millions of reactions. For the purpose of establishing benchmarks and with the goal of identifying the best model for Sinhala sentiment analysis, we also test, on the same data set configuration, other deep learning models catered for sentiment analysis. In this study we report that the 3 layer Bidirectional LSTM model achieves an F1 score of 84.58% for Sinhala sentiment analysis, surpassing the current state-of-the-art model; Capsule B, which only manages to get an F1 score of 82.04%. Further, since all the deep learning models show F1 scores above 75% we conclude that it is safe to claim that Facebook reactions are suitable to predict the sentiment of a text.","PeriodicalId":270295,"journal":{"name":"Proceedings of the 2022 3rd International Conference on Artificial Intelligence in Electronics Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sentiment Analysis with Deep Learning Models: A Comparative Study on a Decade of Sinhala Language Facebook Data\",\"authors\":\"Gihan Weeraprameshwara, Vihanga Jayawickrama, Nisansa de Silva, Yudhanjaya Wijeratne\",\"doi\":\"10.1145/3512826.3512829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between Facebook posts and the corresponding reaction feature is an interesting subject to explore and understand. To achieve this end, we test state-of-the-art Sinhala sentiment analysis models against a data set containing a decade worth of Sinhala posts with millions of reactions. For the purpose of establishing benchmarks and with the goal of identifying the best model for Sinhala sentiment analysis, we also test, on the same data set configuration, other deep learning models catered for sentiment analysis. In this study we report that the 3 layer Bidirectional LSTM model achieves an F1 score of 84.58% for Sinhala sentiment analysis, surpassing the current state-of-the-art model; Capsule B, which only manages to get an F1 score of 82.04%. Further, since all the deep learning models show F1 scores above 75% we conclude that it is safe to claim that Facebook reactions are suitable to predict the sentiment of a text.\",\"PeriodicalId\":270295,\"journal\":{\"name\":\"Proceedings of the 2022 3rd International Conference on Artificial Intelligence in Electronics Engineering\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 3rd International Conference on Artificial Intelligence in Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512826.3512829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 3rd International Conference on Artificial Intelligence in Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512826.3512829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Facebook帖子与相应的反应功能之间的关系是一个值得探索和理解的有趣课题。为了实现这一目标,我们测试了最先进的僧伽罗情感分析模型,并对包含十年来有数百万反应的僧伽罗帖子的数据集进行了测试。为了建立基准并确定僧伽罗情感分析的最佳模型,我们还在相同的数据集配置上测试了其他用于情感分析的深度学习模型。在本研究中,我们报告了三层双向LSTM模型在僧伽罗情感分析中取得了84.58%的F1分数,超过了目前最先进的模型;胶囊B,它只能获得82.04%的F1分数。此外,由于所有的深度学习模型都显示F1得分高于75%,我们得出结论,可以安全地声称Facebook的反应适合预测文本的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis with Deep Learning Models: A Comparative Study on a Decade of Sinhala Language Facebook Data
The relationship between Facebook posts and the corresponding reaction feature is an interesting subject to explore and understand. To achieve this end, we test state-of-the-art Sinhala sentiment analysis models against a data set containing a decade worth of Sinhala posts with millions of reactions. For the purpose of establishing benchmarks and with the goal of identifying the best model for Sinhala sentiment analysis, we also test, on the same data set configuration, other deep learning models catered for sentiment analysis. In this study we report that the 3 layer Bidirectional LSTM model achieves an F1 score of 84.58% for Sinhala sentiment analysis, surpassing the current state-of-the-art model; Capsule B, which only manages to get an F1 score of 82.04%. Further, since all the deep learning models show F1 scores above 75% we conclude that it is safe to claim that Facebook reactions are suitable to predict the sentiment of a text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信