具有不确定性的多物种趋化器模型的稳定性和鲁棒性分析

F. Mazenc, Michael A. Malisoff, G. Robledo
{"title":"具有不确定性的多物种趋化器模型的稳定性和鲁棒性分析","authors":"F. Mazenc, Michael A. Malisoff, G. Robledo","doi":"10.23919/ACC.2017.7963267","DOIUrl":null,"url":null,"abstract":"We prove stability and robustness results for chemostat models with one substrate, an arbitrary number of species, a constant dilution rate, and constant inputs of the species. Unlike all previous works, we prove input-to-state stability under uncertainties in important cases where the controls are the input nutrient concentration and the species inputs. Our assumptions ensure global asymptotic stability for an equilibrium, which can allow persistence of multiple species, when the uncertainties are zero. We allow arbitrarily large bounds on the uncertainties in the species dynamics, and equilibria that can be in the boundary of the state space.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability and robustness analysis for a multi-species chemostat model with uncertainties\",\"authors\":\"F. Mazenc, Michael A. Malisoff, G. Robledo\",\"doi\":\"10.23919/ACC.2017.7963267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove stability and robustness results for chemostat models with one substrate, an arbitrary number of species, a constant dilution rate, and constant inputs of the species. Unlike all previous works, we prove input-to-state stability under uncertainties in important cases where the controls are the input nutrient concentration and the species inputs. Our assumptions ensure global asymptotic stability for an equilibrium, which can allow persistence of multiple species, when the uncertainties are zero. We allow arbitrarily large bounds on the uncertainties in the species dynamics, and equilibria that can be in the boundary of the state space.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了具有一个底物,任意数量的物种,恒定稀释率和恒定物种输入的恒化模型的稳定性和鲁棒性结果。与之前的所有工作不同,我们证明了在不确定的重要情况下输入到状态的稳定性,其中控制是输入营养浓度和物种输入。我们的假设确保了平衡的全局渐近稳定性,当不确定性为零时,它可以允许多物种的持续存在。我们允许在物种动力学的不确定性上有任意大的边界,以及可以在状态空间边界上的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and robustness analysis for a multi-species chemostat model with uncertainties
We prove stability and robustness results for chemostat models with one substrate, an arbitrary number of species, a constant dilution rate, and constant inputs of the species. Unlike all previous works, we prove input-to-state stability under uncertainties in important cases where the controls are the input nutrient concentration and the species inputs. Our assumptions ensure global asymptotic stability for an equilibrium, which can allow persistence of multiple species, when the uncertainties are zero. We allow arbitrarily large bounds on the uncertainties in the species dynamics, and equilibria that can be in the boundary of the state space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信