{"title":"基于角向和径向延伸球面波函数(PSWF)的超宽带信号设计","authors":"D. Adhikari, C. Bhattacharya","doi":"10.1109/INDCON.2011.6139572","DOIUrl":null,"url":null,"abstract":"Prolate spheroidal wave functions (PSWF) provide significant advantage in ultra wideband (UWB) pulse-shapes design because of the time limited nature and wide bandwidth of such orthogonal signal waveforms. In this paper, we show the design procedure for UWB pulses utilizing the joining properties of radial and angular PSWF. Results in the paper demonstrate utility of eigenvalues and power spectral properties of the designed waveforms those comply the FCC regulations.","PeriodicalId":425080,"journal":{"name":"2011 Annual IEEE India Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra wide band signal design by angular and radial prolate spheroidal wave functions (PSWF)\",\"authors\":\"D. Adhikari, C. Bhattacharya\",\"doi\":\"10.1109/INDCON.2011.6139572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prolate spheroidal wave functions (PSWF) provide significant advantage in ultra wideband (UWB) pulse-shapes design because of the time limited nature and wide bandwidth of such orthogonal signal waveforms. In this paper, we show the design procedure for UWB pulses utilizing the joining properties of radial and angular PSWF. Results in the paper demonstrate utility of eigenvalues and power spectral properties of the designed waveforms those comply the FCC regulations.\",\"PeriodicalId\":425080,\"journal\":{\"name\":\"2011 Annual IEEE India Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2011.6139572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2011.6139572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra wide band signal design by angular and radial prolate spheroidal wave functions (PSWF)
Prolate spheroidal wave functions (PSWF) provide significant advantage in ultra wideband (UWB) pulse-shapes design because of the time limited nature and wide bandwidth of such orthogonal signal waveforms. In this paper, we show the design procedure for UWB pulses utilizing the joining properties of radial and angular PSWF. Results in the paper demonstrate utility of eigenvalues and power spectral properties of the designed waveforms those comply the FCC regulations.