{"title":"基于小波纹理分析的黑色素瘤病灶分类","authors":"R. Garnavi, M. Aldeen, J. Bailey","doi":"10.1109/DICTA.2010.22","DOIUrl":null,"url":null,"abstract":"This paper presents a wavelet-based texture analysis method for classification of melanoma. The method applies tree-structured wavelet transform on different color channels of red, green, blue and luminance of dermoscopy images, and employs various statistical measures and ratios on wavelet coefficients. Feature extraction and a two-stage feature selection method, based on entropy and correlation, were applied to a train set of 103 images. The resultant feature subsets were then fed into four different classifiers: support vector machine, random forest, logistic model tree and hidden naive bayes to classify melanoma in a test set of 102 images, which resulted in an accuracy of 88.24% and ROC area of 0.918. Comparative study carried out in this paper shows that the proposed feature extraction method outperforms three other wavelet-based approaches.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Classification of Melanoma Lesions Using Wavelet-Based Texture Analysis\",\"authors\":\"R. Garnavi, M. Aldeen, J. Bailey\",\"doi\":\"10.1109/DICTA.2010.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a wavelet-based texture analysis method for classification of melanoma. The method applies tree-structured wavelet transform on different color channels of red, green, blue and luminance of dermoscopy images, and employs various statistical measures and ratios on wavelet coefficients. Feature extraction and a two-stage feature selection method, based on entropy and correlation, were applied to a train set of 103 images. The resultant feature subsets were then fed into four different classifiers: support vector machine, random forest, logistic model tree and hidden naive bayes to classify melanoma in a test set of 102 images, which resulted in an accuracy of 88.24% and ROC area of 0.918. Comparative study carried out in this paper shows that the proposed feature extraction method outperforms three other wavelet-based approaches.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Melanoma Lesions Using Wavelet-Based Texture Analysis
This paper presents a wavelet-based texture analysis method for classification of melanoma. The method applies tree-structured wavelet transform on different color channels of red, green, blue and luminance of dermoscopy images, and employs various statistical measures and ratios on wavelet coefficients. Feature extraction and a two-stage feature selection method, based on entropy and correlation, were applied to a train set of 103 images. The resultant feature subsets were then fed into four different classifiers: support vector machine, random forest, logistic model tree and hidden naive bayes to classify melanoma in a test set of 102 images, which resulted in an accuracy of 88.24% and ROC area of 0.918. Comparative study carried out in this paper shows that the proposed feature extraction method outperforms three other wavelet-based approaches.