基于概率函数的模糊神经网络模糊线性回归数值解

S. Ezadi, S. Askari
{"title":"基于概率函数的模糊神经网络模糊线性回归数值解","authors":"S. Ezadi, S. Askari","doi":"10.5899/2017/JFSVA-00380","DOIUrl":null,"url":null,"abstract":"In this work, we consider the development of a fuzzy neural network based on probability function for Estimated output of fuzzy regression models with test real input and fuzzy output. The proposed approach is a fuzzification of the outputs and weights of conventional fuzzy neural network based on probability function. The error of the proposed method is based on total square error is minimized by optimization method in order to be able to obtain the optimal weights of the neural network. The advantage of the proposed approach is its simplicity and computation as well as its performance. To compare the performance of the proposed method with the other traditional methods given in the literature several numerical examples are presented.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"14 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of Fuzzy linear Regression using Fuzzy Neural Network Based on Probability Function\",\"authors\":\"S. Ezadi, S. Askari\",\"doi\":\"10.5899/2017/JFSVA-00380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the development of a fuzzy neural network based on probability function for Estimated output of fuzzy regression models with test real input and fuzzy output. The proposed approach is a fuzzification of the outputs and weights of conventional fuzzy neural network based on probability function. The error of the proposed method is based on total square error is minimized by optimization method in order to be able to obtain the optimal weights of the neural network. The advantage of the proposed approach is its simplicity and computation as well as its performance. To compare the performance of the proposed method with the other traditional methods given in the literature several numerical examples are presented.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"14 16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2017/JFSVA-00380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2017/JFSVA-00380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了基于概率函数的模糊神经网络的发展,用于具有测试真实输入和模糊输出的模糊回归模型的估计输出。该方法是基于概率函数对传统模糊神经网络的输出和权值进行模糊化。该方法的误差是基于优化方法使总平方误差最小化,以获得神经网络的最优权值。该方法的优点是计算简单,性能好。为了与文献中给出的其他传统方法进行性能比较,给出了几个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of Fuzzy linear Regression using Fuzzy Neural Network Based on Probability Function
In this work, we consider the development of a fuzzy neural network based on probability function for Estimated output of fuzzy regression models with test real input and fuzzy output. The proposed approach is a fuzzification of the outputs and weights of conventional fuzzy neural network based on probability function. The error of the proposed method is based on total square error is minimized by optimization method in order to be able to obtain the optimal weights of the neural network. The advantage of the proposed approach is its simplicity and computation as well as its performance. To compare the performance of the proposed method with the other traditional methods given in the literature several numerical examples are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信