推荐我的菜:一个多感官的食物推荐

Hannah Abdool, A. Pooransingh, Ying Li
{"title":"推荐我的菜:一个多感官的食物推荐","authors":"Hannah Abdool, A. Pooransingh, Ying Li","doi":"10.1109/PACRIM.2015.7334841","DOIUrl":null,"url":null,"abstract":"In this paper, the model for a multi-sensory food recommender is presented, which takes into account both taste and aesthetic attributes of food. The recommender was designed using a case-based reasoning (CBR) approach, and built with the myCBR framework. The recommender was later integrated into an Android application prototype, via which potential user feedback was obtained. We conducted a preliminary user study in which all participants rated their satisfaction with the recommendations above 5 on a scale of 0 to 10. Furthermore, 72% of participants felt that by considering their aesthetic preferences in the recommendation process, the system produced better recommendations than if they were not considered.","PeriodicalId":350052,"journal":{"name":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recommend My Dish: A multi-sensory food recommender\",\"authors\":\"Hannah Abdool, A. Pooransingh, Ying Li\",\"doi\":\"10.1109/PACRIM.2015.7334841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the model for a multi-sensory food recommender is presented, which takes into account both taste and aesthetic attributes of food. The recommender was designed using a case-based reasoning (CBR) approach, and built with the myCBR framework. The recommender was later integrated into an Android application prototype, via which potential user feedback was obtained. We conducted a preliminary user study in which all participants rated their satisfaction with the recommendations above 5 on a scale of 0 to 10. Furthermore, 72% of participants felt that by considering their aesthetic preferences in the recommendation process, the system produced better recommendations than if they were not considered.\",\"PeriodicalId\":350052,\"journal\":{\"name\":\"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2015.7334841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2015.7334841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种同时考虑食物的味觉和审美属性的多感官食物推荐模型。使用基于案例的推理(CBR)方法设计推荐器,并使用myCBR框架构建推荐器。这个推荐程序后来被整合到一个Android应用程序原型中,通过这个原型获得潜在用户的反馈。我们进行了一项初步的用户研究,所有参与者将他们对建议的满意度在0到10的范围内评为5以上。此外,72%的参与者认为,通过在推荐过程中考虑他们的审美偏好,系统产生的推荐比不考虑他们的推荐更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommend My Dish: A multi-sensory food recommender
In this paper, the model for a multi-sensory food recommender is presented, which takes into account both taste and aesthetic attributes of food. The recommender was designed using a case-based reasoning (CBR) approach, and built with the myCBR framework. The recommender was later integrated into an Android application prototype, via which potential user feedback was obtained. We conducted a preliminary user study in which all participants rated their satisfaction with the recommendations above 5 on a scale of 0 to 10. Furthermore, 72% of participants felt that by considering their aesthetic preferences in the recommendation process, the system produced better recommendations than if they were not considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信