基于核的语音识别非线性特征提取方法

Hao Huang, Jie Zhu
{"title":"基于核的语音识别非线性特征提取方法","authors":"Hao Huang, Jie Zhu","doi":"10.1109/ISDA.2006.253706","DOIUrl":null,"url":null,"abstract":"In this paper, we report our recent investigation on the extension of heteroscedastic discriminant analysis and maximum likelihood linear transformation algorithms by taking advantage of the kernel method. The kernel-based heteroscedastic discriminant analysis and kernel-based maximum likelihood linear transformation are formulated. A set of preliminary experimental tests apply the above two techniques to full set digit vs. digit speech classification tasks and reduced sample set 10 isolated digits speech recognition. Comparisons with the existing linear and non-linear feature extraction algorithms such as linear discriminant analysis, kernel based linear discriminant analysis, heteroscedastic discriminant analysis and kernel-based heteroscedastic discriminant analysis are made. Discussions on the effectiveness of the proposed methods are also given","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Kernel based Non-linear Feature Extraction Methods for Speech Recognition\",\"authors\":\"Hao Huang, Jie Zhu\",\"doi\":\"10.1109/ISDA.2006.253706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report our recent investigation on the extension of heteroscedastic discriminant analysis and maximum likelihood linear transformation algorithms by taking advantage of the kernel method. The kernel-based heteroscedastic discriminant analysis and kernel-based maximum likelihood linear transformation are formulated. A set of preliminary experimental tests apply the above two techniques to full set digit vs. digit speech classification tasks and reduced sample set 10 isolated digits speech recognition. Comparisons with the existing linear and non-linear feature extraction algorithms such as linear discriminant analysis, kernel based linear discriminant analysis, heteroscedastic discriminant analysis and kernel-based heteroscedastic discriminant analysis are made. Discussions on the effectiveness of the proposed methods are also given\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.253706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.253706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文报道了利用核方法扩展异方差判别分析和极大似然线性变换算法的最新研究成果。提出了基于核的异方差判别分析和基于核的极大似然线性变换。将上述两种技术应用于全套数字与数字语音分类任务和减少样本集10个孤立数字语音识别的初步实验测试。并与现有的线性判别分析、基于核的线性判别分析、异方差判别分析和基于核的异方差判别分析等线性和非线性特征提取算法进行了比较。并对所提方法的有效性进行了讨论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel based Non-linear Feature Extraction Methods for Speech Recognition
In this paper, we report our recent investigation on the extension of heteroscedastic discriminant analysis and maximum likelihood linear transformation algorithms by taking advantage of the kernel method. The kernel-based heteroscedastic discriminant analysis and kernel-based maximum likelihood linear transformation are formulated. A set of preliminary experimental tests apply the above two techniques to full set digit vs. digit speech classification tasks and reduced sample set 10 isolated digits speech recognition. Comparisons with the existing linear and non-linear feature extraction algorithms such as linear discriminant analysis, kernel based linear discriminant analysis, heteroscedastic discriminant analysis and kernel-based heteroscedastic discriminant analysis are made. Discussions on the effectiveness of the proposed methods are also given
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信