在线手写识别的自适应技术比较

A. Brakensiek, A. Kosmala, G. Rigoll
{"title":"在线手写识别的自适应技术比较","authors":"A. Brakensiek, A. Kosmala, G. Rigoll","doi":"10.1109/ICDAR.2001.953837","DOIUrl":null,"url":null,"abstract":"This paper describes an online handwriting recognition system with focus on adaptation techniques. Our hidden Markov model (HMM)-based recognition system for cursive German script can be adapted to the writing style of a new writer using either a retraining depending on the EM (expectation maximization)-approach or an adaptation according to the MAP (maximum a posteriori) or MLLR (maximum likelihood linear regression)-criterion. The performance of the resulting writer-dependent system increases significantly even if the amount of adaptation data is very small (about 6 words). So this approach is also applicable for online systems in hand-held computers such as PDAs. Special attention was paid to the performance comparison of the different adaptation techniques with the availability of different amounts of adaptation data ranging from a few words tip to 100 words per writer.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Comparing adaptation techniques for on-line handwriting recognition\",\"authors\":\"A. Brakensiek, A. Kosmala, G. Rigoll\",\"doi\":\"10.1109/ICDAR.2001.953837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an online handwriting recognition system with focus on adaptation techniques. Our hidden Markov model (HMM)-based recognition system for cursive German script can be adapted to the writing style of a new writer using either a retraining depending on the EM (expectation maximization)-approach or an adaptation according to the MAP (maximum a posteriori) or MLLR (maximum likelihood linear regression)-criterion. The performance of the resulting writer-dependent system increases significantly even if the amount of adaptation data is very small (about 6 words). So this approach is also applicable for online systems in hand-held computers such as PDAs. Special attention was paid to the performance comparison of the different adaptation techniques with the availability of different amounts of adaptation data ranging from a few words tip to 100 words per writer.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文介绍了一种基于自适应技术的在线手写识别系统。我们的基于隐马尔可夫模型(HMM)的草书德语识别系统可以使用基于EM(期望最大化)方法的再训练或根据MAP(最大后验)或MLLR(最大似然线性回归)标准的自适应来适应新作者的写作风格。即使适配数据量非常小(大约6个单词),生成的依赖于书写器的系统的性能也会显著提高。因此,这种方法也适用于pda等手持计算机中的在线系统。我们特别关注了不同的改编技术的性能比较,并提供了不同数量的改编数据,从每个作者的几个单词提示到100个单词不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing adaptation techniques for on-line handwriting recognition
This paper describes an online handwriting recognition system with focus on adaptation techniques. Our hidden Markov model (HMM)-based recognition system for cursive German script can be adapted to the writing style of a new writer using either a retraining depending on the EM (expectation maximization)-approach or an adaptation according to the MAP (maximum a posteriori) or MLLR (maximum likelihood linear regression)-criterion. The performance of the resulting writer-dependent system increases significantly even if the amount of adaptation data is very small (about 6 words). So this approach is also applicable for online systems in hand-held computers such as PDAs. Special attention was paid to the performance comparison of the different adaptation techniques with the availability of different amounts of adaptation data ranging from a few words tip to 100 words per writer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信