使用apache spark和自组织地图库在单机上进行高效的大数据分析

David Andresic, Petr Šaloun, Ioannis Anagnostopoulos
{"title":"使用apache spark和自组织地图库在单机上进行高效的大数据分析","authors":"David Andresic, Petr Šaloun, Ioannis Anagnostopoulos","doi":"10.1109/SMAP.2017.8022657","DOIUrl":null,"url":null,"abstract":"Apache Spark is commonly used as a big data analytical platform on powerful computer clusters, as it primarily employ the main computer memory for the evaluation. Our attempt adds self-organizing map software libraries onto a single big data analytical stack and is efficient and fast enough even on a standard single computer. This innovative approach brings the big data analysis to researchers with limited resources. Our genuine idea was experimentally confirmed and is described here. As a case study for our method we we used the available #Brexit data and the sentiment analysis of corresponding tweets and the correlation with the stock exchange data.","PeriodicalId":441461,"journal":{"name":"2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient big data analysis on a single machine using apache spark and self-organizing map libraries\",\"authors\":\"David Andresic, Petr Šaloun, Ioannis Anagnostopoulos\",\"doi\":\"10.1109/SMAP.2017.8022657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apache Spark is commonly used as a big data analytical platform on powerful computer clusters, as it primarily employ the main computer memory for the evaluation. Our attempt adds self-organizing map software libraries onto a single big data analytical stack and is efficient and fast enough even on a standard single computer. This innovative approach brings the big data analysis to researchers with limited resources. Our genuine idea was experimentally confirmed and is described here. As a case study for our method we we used the available #Brexit data and the sentiment analysis of corresponding tweets and the correlation with the stock exchange data.\",\"PeriodicalId\":441461,\"journal\":{\"name\":\"2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMAP.2017.8022657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2017.8022657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Apache Spark通常用作强大的计算机集群上的大数据分析平台,因为它主要使用主计算机内存进行评估。我们尝试将自组织地图软件库添加到单个大数据分析堆栈上,即使在标准的单个计算机上也足够高效和快速。这种创新的方法使资源有限的研究人员能够进行大数据分析。我们的真实想法在实验中得到了证实,并在这里进行了描述。作为我们方法的案例研究,我们使用了可用的#Brexit数据和相应推文的情绪分析以及与证券交易所数据的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient big data analysis on a single machine using apache spark and self-organizing map libraries
Apache Spark is commonly used as a big data analytical platform on powerful computer clusters, as it primarily employ the main computer memory for the evaluation. Our attempt adds self-organizing map software libraries onto a single big data analytical stack and is efficient and fast enough even on a standard single computer. This innovative approach brings the big data analysis to researchers with limited resources. Our genuine idea was experimentally confirmed and is described here. As a case study for our method we we used the available #Brexit data and the sentiment analysis of corresponding tweets and the correlation with the stock exchange data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信