FASTBLOCK:通过硬件事务性内存加速区块链

Yue Li, Han Liu, Yuanliang Chen, Jianbo Gao, Zhenhao Wu, Zhi Guan, Zhong Chen
{"title":"FASTBLOCK:通过硬件事务性内存加速区块链","authors":"Yue Li, Han Liu, Yuanliang Chen, Jianbo Gao, Zhenhao Wu, Zhi Guan, Zhong Chen","doi":"10.1109/ICDCS51616.2021.00032","DOIUrl":null,"url":null,"abstract":"The efficiency of block lifecycle determines the performance of blockchain, which is critically affected by the execution, mining and validation steps in blockchain lifecycle. To accelerate blockchains, many works focus on optimizing the mining step while ignoring other steps. In this paper, we propose a novel blockchain framework-FastBlock to speed up the execution and validation steps by introducing efficient concurrency. To efficiently prevent the potential concurrency violations, FastBlock utilizes symbolic execution to identify minimal atomic sections in each transaction and guarantees the atomicity of these sections in execution step via an efficient concurrency control mechanism-hardware transactional memory (HTM). To enable a deterministic validation step, FastBlock concurrently re-executes transactions based on a happen-before graph without increasing block size. Finally, we implement FastBlock and evaluate it in terms of conflicting transactions rate, number of transactions per block, and varying thread number. Our results indicate that FastBlock is efficient: the execution step and validation step speed up to 3.0x and 2.3x on average over the original serial model respectively with eight concurrent threads.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FASTBLOCK: Accelerating Blockchains via Hardware Transactional Memory\",\"authors\":\"Yue Li, Han Liu, Yuanliang Chen, Jianbo Gao, Zhenhao Wu, Zhi Guan, Zhong Chen\",\"doi\":\"10.1109/ICDCS51616.2021.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of block lifecycle determines the performance of blockchain, which is critically affected by the execution, mining and validation steps in blockchain lifecycle. To accelerate blockchains, many works focus on optimizing the mining step while ignoring other steps. In this paper, we propose a novel blockchain framework-FastBlock to speed up the execution and validation steps by introducing efficient concurrency. To efficiently prevent the potential concurrency violations, FastBlock utilizes symbolic execution to identify minimal atomic sections in each transaction and guarantees the atomicity of these sections in execution step via an efficient concurrency control mechanism-hardware transactional memory (HTM). To enable a deterministic validation step, FastBlock concurrently re-executes transactions based on a happen-before graph without increasing block size. Finally, we implement FastBlock and evaluate it in terms of conflicting transactions rate, number of transactions per block, and varying thread number. Our results indicate that FastBlock is efficient: the execution step and validation step speed up to 3.0x and 2.3x on average over the original serial model respectively with eight concurrent threads.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

区块生命周期的效率决定了区块链的性能,而区块链的性能又受到区块链生命周期中执行、挖掘和验证步骤的严重影响。为了加速区块链,许多工作都专注于优化挖矿步骤,而忽略了其他步骤。在本文中,我们提出了一个新的区块链框架- fastblock,通过引入有效的并发性来加快执行和验证步骤。为了有效地防止潜在的并发性冲突,FastBlock利用符号执行来识别每个事务中的最小原子部分,并通过有效的并发控制机制-硬件事务性内存(HTM)在执行步骤中保证这些部分的原子性。为了启用确定性验证步骤,FastBlock在不增加块大小的情况下,基于happens -before图并发地重新执行事务。最后,我们实现了FastBlock,并根据冲突事务率、每个块的事务数和线程数的变化对其进行了评估。结果表明,FastBlock是高效的:在8个并发线程的情况下,FastBlock的执行步长和验证步长分别比原始串行模型平均提高了3.0倍和2.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FASTBLOCK: Accelerating Blockchains via Hardware Transactional Memory
The efficiency of block lifecycle determines the performance of blockchain, which is critically affected by the execution, mining and validation steps in blockchain lifecycle. To accelerate blockchains, many works focus on optimizing the mining step while ignoring other steps. In this paper, we propose a novel blockchain framework-FastBlock to speed up the execution and validation steps by introducing efficient concurrency. To efficiently prevent the potential concurrency violations, FastBlock utilizes symbolic execution to identify minimal atomic sections in each transaction and guarantees the atomicity of these sections in execution step via an efficient concurrency control mechanism-hardware transactional memory (HTM). To enable a deterministic validation step, FastBlock concurrently re-executes transactions based on a happen-before graph without increasing block size. Finally, we implement FastBlock and evaluate it in terms of conflicting transactions rate, number of transactions per block, and varying thread number. Our results indicate that FastBlock is efficient: the execution step and validation step speed up to 3.0x and 2.3x on average over the original serial model respectively with eight concurrent threads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信