{"title":"Otizm Spektrum Bozukluğunda Bulanık Kaba Küme Özellik Seçimi Kullanılarak Lojistik Regresyon ile Sınıflandırılması","authors":"Cengiz Gazeloğlu","doi":"10.51541/nicel.1132140","DOIUrl":null,"url":null,"abstract":"Otizm Spektrum Bozukluğu (OSB), doğuştan gelen ve genel olarak sosyal ilişkilerde ve iletişim kurmada sıkıntı yaşama durumudur. Bu durum aslında bazı uzmanlar tarafından nöro gelişimsel bir bozukluk veya psikolojik durum spektrumu olarak da tanımlanabiliyor. Her hastalıkta olduğu gibi bu rahatsızlıkta da erken tanı çok önem arz etmektedir. Bu çalışmanın temel amaçlarından biri, OBS rahatsızlığını, lojistik regresyon algoritmasını kullanarak bireylerde bu bozukluğun olup olmadığını doğruluk oranı yüksek bir şekilde sınıflandıra bilmektir. Diğer amaç ise öne sürülen sınıflandırma modeli ile alanda çalışan doktorlara hata yapmamaları anlamında hem yardımcı olmak hem de teşhis yöntemini daha hızlı hale getirerek zamandan ve maliyetten tasarruf etmektir. Çalışma verileri WEKA programı yardımı ile analiz edilmiştir. Sınıflandırma algoritması olarak lojistik regresyon algoritması kullanılmıştır. Algoritmanın daha hızlı ve doğru çalışması adına bulanık kaba küme yöntemi ile özellik seçimi yapılmıştır. Algoritmanın veri ezberleme durumu ortadan kaldırmak adına 10 döngülü çapraz doğrulama yapılmıştır. Sonuçların değerlendirilmesi için TP ve FP oranları hesaplanmıştır. Hesaplanan sonuçlara göre TP oranı özellik seçimi yapılmadan önce 0.947 iken özellik seçimi yapıldıktan sonra 0.974 olarak hesaplanmıştır. Benzer şekilde FP oranları ise sırasıyla 0.043 ve 0.028 olarak tespit edilmiştir. Bu sonuçlara göre algoritmanın OSB’yi sınıflandırmada başarılı olduğu söylenebilir. Ek olarak özellik seçimi yapılmadan önce ve sonraki sonuçları karşılaştırmak için ROC analizi yapılmıştır. Analiz sonucuna göre ROC eğirisinin altında kalan alanın 0.99 olarak hesaplanmış olması özellik seçimi yapılmasının doğru bir karar olduğunun göstergesidir. Ayrıca özellik seçimi yapıldıktan sonra doğru sınıflandırma oranı %95.205’ten %96.575’e çıkmıştır.","PeriodicalId":382804,"journal":{"name":"Nicel Bilimler Dergisi","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nicel Bilimler Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51541/nicel.1132140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Otizm Spektrum Bozukluğunda Bulanık Kaba Küme Özellik Seçimi Kullanılarak Lojistik Regresyon ile Sınıflandırılması
Otizm Spektrum Bozukluğu (OSB), doğuştan gelen ve genel olarak sosyal ilişkilerde ve iletişim kurmada sıkıntı yaşama durumudur. Bu durum aslında bazı uzmanlar tarafından nöro gelişimsel bir bozukluk veya psikolojik durum spektrumu olarak da tanımlanabiliyor. Her hastalıkta olduğu gibi bu rahatsızlıkta da erken tanı çok önem arz etmektedir. Bu çalışmanın temel amaçlarından biri, OBS rahatsızlığını, lojistik regresyon algoritmasını kullanarak bireylerde bu bozukluğun olup olmadığını doğruluk oranı yüksek bir şekilde sınıflandıra bilmektir. Diğer amaç ise öne sürülen sınıflandırma modeli ile alanda çalışan doktorlara hata yapmamaları anlamında hem yardımcı olmak hem de teşhis yöntemini daha hızlı hale getirerek zamandan ve maliyetten tasarruf etmektir. Çalışma verileri WEKA programı yardımı ile analiz edilmiştir. Sınıflandırma algoritması olarak lojistik regresyon algoritması kullanılmıştır. Algoritmanın daha hızlı ve doğru çalışması adına bulanık kaba küme yöntemi ile özellik seçimi yapılmıştır. Algoritmanın veri ezberleme durumu ortadan kaldırmak adına 10 döngülü çapraz doğrulama yapılmıştır. Sonuçların değerlendirilmesi için TP ve FP oranları hesaplanmıştır. Hesaplanan sonuçlara göre TP oranı özellik seçimi yapılmadan önce 0.947 iken özellik seçimi yapıldıktan sonra 0.974 olarak hesaplanmıştır. Benzer şekilde FP oranları ise sırasıyla 0.043 ve 0.028 olarak tespit edilmiştir. Bu sonuçlara göre algoritmanın OSB’yi sınıflandırmada başarılı olduğu söylenebilir. Ek olarak özellik seçimi yapılmadan önce ve sonraki sonuçları karşılaştırmak için ROC analizi yapılmıştır. Analiz sonucuna göre ROC eğirisinin altında kalan alanın 0.99 olarak hesaplanmış olması özellik seçimi yapılmasının doğru bir karar olduğunun göstergesidir. Ayrıca özellik seçimi yapıldıktan sonra doğru sınıflandırma oranı %95.205’ten %96.575’e çıkmıştır.