Cengiz Gazeloğlu
{"title":"Otizm Spektrum Bozukluğunda Bulanık Kaba Küme Özellik Seçimi Kullanılarak Lojistik Regresyon ile Sınıflandırılması","authors":"Cengiz Gazeloğlu","doi":"10.51541/nicel.1132140","DOIUrl":null,"url":null,"abstract":"Otizm Spektrum Bozukluğu (OSB), doğuştan gelen ve genel olarak sosyal ilişkilerde ve iletişim kurmada sıkıntı yaşama durumudur. Bu durum aslında bazı uzmanlar tarafından nöro gelişimsel bir bozukluk veya psikolojik durum spektrumu olarak da tanımlanabiliyor. Her hastalıkta olduğu gibi bu rahatsızlıkta da erken tanı çok önem arz etmektedir. Bu çalışmanın temel amaçlarından biri, OBS rahatsızlığını, lojistik regresyon algoritmasını kullanarak bireylerde bu bozukluğun olup olmadığını doğruluk oranı yüksek bir şekilde sınıflandıra bilmektir. Diğer amaç ise öne sürülen sınıflandırma modeli ile alanda çalışan doktorlara hata yapmamaları anlamında hem yardımcı olmak hem de teşhis yöntemini daha hızlı hale getirerek zamandan ve maliyetten tasarruf etmektir. Çalışma verileri WEKA programı yardımı ile analiz edilmiştir. Sınıflandırma algoritması olarak lojistik regresyon algoritması kullanılmıştır. Algoritmanın daha hızlı ve doğru çalışması adına bulanık kaba küme yöntemi ile özellik seçimi yapılmıştır. Algoritmanın veri ezberleme durumu ortadan kaldırmak adına 10 döngülü çapraz doğrulama yapılmıştır. Sonuçların değerlendirilmesi için TP ve FP oranları hesaplanmıştır. Hesaplanan sonuçlara göre TP oranı özellik seçimi yapılmadan önce 0.947 iken özellik seçimi yapıldıktan sonra 0.974 olarak hesaplanmıştır. Benzer şekilde FP oranları ise sırasıyla 0.043 ve 0.028 olarak tespit edilmiştir. Bu sonuçlara göre algoritmanın OSB’yi sınıflandırmada başarılı olduğu söylenebilir. Ek olarak özellik seçimi yapılmadan önce ve sonraki sonuçları karşılaştırmak için ROC analizi yapılmıştır. Analiz sonucuna göre ROC eğirisinin altında kalan alanın 0.99 olarak hesaplanmış olması özellik seçimi yapılmasının doğru bir karar olduğunun göstergesidir. Ayrıca özellik seçimi yapıldıktan sonra doğru sınıflandırma oranı %95.205’ten %96.575’e çıkmıştır.","PeriodicalId":382804,"journal":{"name":"Nicel Bilimler Dergisi","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nicel Bilimler Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51541/nicel.1132140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)是一种先天性疾病,通常会导致社交关系和沟通方面的困难。一些专家实际上将这种疾病定义为神经发育障碍或心理疾病谱系。与所有疾病一样,早期诊断对这种疾病非常重要。本研究的主要目的之一是利用逻辑回归算法,以较高的准确率对个体是否患有这种疾病进行分类。另一个目的是帮助在该领域工作的医生避免使用所提出的分类模型犯错,并通过加快诊断方法来节省时间和成本。研究数据借助 WEKA 软件进行分析。分类算法采用逻辑回归算法。为了让算法更快、更准确地工作,采用了模糊粗糙集方法进行特征选择。为了消除算法的数据记忆,进行了 10 次交叉验证。计算 TP 和 FP 比率来评估结果。根据计算结果,特征选择前的 TP 比率为 0.947,特征选择后为 0.974。同样,FP 比率分别为 0.043 和 0.028。根据这些结果,可以说该算法成功地对 ASD 进行了分类。此外,还进行了 ROC 分析,以比较特征选择前后的结果。根据分析结果,计算得出 ROC 曲线下面积为 0.99,这表明特征选择是正确的决策。此外,特征选择后的正确分类率从 95.205% 提高到 96.575%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Otizm Spektrum Bozukluğunda Bulanık Kaba Küme Özellik Seçimi Kullanılarak Lojistik Regresyon ile Sınıflandırılması
Otizm Spektrum Bozukluğu (OSB), doğuştan gelen ve genel olarak sosyal ilişkilerde ve iletişim kurmada sıkıntı yaşama durumudur. Bu durum aslında bazı uzmanlar tarafından nöro gelişimsel bir bozukluk veya psikolojik durum spektrumu olarak da tanımlanabiliyor. Her hastalıkta olduğu gibi bu rahatsızlıkta da erken tanı çok önem arz etmektedir. Bu çalışmanın temel amaçlarından biri, OBS rahatsızlığını, lojistik regresyon algoritmasını kullanarak bireylerde bu bozukluğun olup olmadığını doğruluk oranı yüksek bir şekilde sınıflandıra bilmektir. Diğer amaç ise öne sürülen sınıflandırma modeli ile alanda çalışan doktorlara hata yapmamaları anlamında hem yardımcı olmak hem de teşhis yöntemini daha hızlı hale getirerek zamandan ve maliyetten tasarruf etmektir. Çalışma verileri WEKA programı yardımı ile analiz edilmiştir. Sınıflandırma algoritması olarak lojistik regresyon algoritması kullanılmıştır. Algoritmanın daha hızlı ve doğru çalışması adına bulanık kaba küme yöntemi ile özellik seçimi yapılmıştır. Algoritmanın veri ezberleme durumu ortadan kaldırmak adına 10 döngülü çapraz doğrulama yapılmıştır. Sonuçların değerlendirilmesi için TP ve FP oranları hesaplanmıştır. Hesaplanan sonuçlara göre TP oranı özellik seçimi yapılmadan önce 0.947 iken özellik seçimi yapıldıktan sonra 0.974 olarak hesaplanmıştır. Benzer şekilde FP oranları ise sırasıyla 0.043 ve 0.028 olarak tespit edilmiştir. Bu sonuçlara göre algoritmanın OSB’yi sınıflandırmada başarılı olduğu söylenebilir. Ek olarak özellik seçimi yapılmadan önce ve sonraki sonuçları karşılaştırmak için ROC analizi yapılmıştır. Analiz sonucuna göre ROC eğirisinin altında kalan alanın 0.99 olarak hesaplanmış olması özellik seçimi yapılmasının doğru bir karar olduğunun göstergesidir. Ayrıca özellik seçimi yapıldıktan sonra doğru sınıflandırma oranı %95.205’ten %96.575’e çıkmıştır.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信