{"title":"不费吹灰之力的对冲:一种遗传规划方法","authors":"T. Lensberg, K. Schenk-Hoppé","doi":"10.1080/21649502.2013.813166","DOIUrl":null,"url":null,"abstract":"Hedging in the presence of transaction costs leads to complex optimization problems. These problems typically lack closed-form solutions, and their implementation relies on numerical methods that provide hedging strategies for specific parameter values. In this paper, we use a genetic programming algorithm to derive explicit formulas for near-optimal hedging strategies under nonlinear transaction costs. The strategies are valid over a large range of parameter values and require no information about the structure of the optimal hedging strategy.","PeriodicalId":438897,"journal":{"name":"Quantitative Finance Letters","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hedging without sweat: a genetic programming approach\",\"authors\":\"T. Lensberg, K. Schenk-Hoppé\",\"doi\":\"10.1080/21649502.2013.813166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hedging in the presence of transaction costs leads to complex optimization problems. These problems typically lack closed-form solutions, and their implementation relies on numerical methods that provide hedging strategies for specific parameter values. In this paper, we use a genetic programming algorithm to derive explicit formulas for near-optimal hedging strategies under nonlinear transaction costs. The strategies are valid over a large range of parameter values and require no information about the structure of the optimal hedging strategy.\",\"PeriodicalId\":438897,\"journal\":{\"name\":\"Quantitative Finance Letters\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21649502.2013.813166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21649502.2013.813166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hedging without sweat: a genetic programming approach
Hedging in the presence of transaction costs leads to complex optimization problems. These problems typically lack closed-form solutions, and their implementation relies on numerical methods that provide hedging strategies for specific parameter values. In this paper, we use a genetic programming algorithm to derive explicit formulas for near-optimal hedging strategies under nonlinear transaction costs. The strategies are valid over a large range of parameter values and require no information about the structure of the optimal hedging strategy.