广义Burgers - Huxley方程的一种四阶改进数值格式

A. G. Bratsos
{"title":"广义Burgers - Huxley方程的一种四阶改进数值格式","authors":"A. G. Bratsos","doi":"10.4236/ajcm.2011.13017","DOIUrl":null,"url":null,"abstract":"A fourth order finite-difference scheme in a two-time level recurrence relation is proposed for the numerical solution of the generalized Burgers--Huxley equation. The resulting nonlinear system, which is analysed for stability, is solved using an improved predictor-corrector method. The efficiency of the proposed method is tested to the kink wave using both appropriate boundary values and conditions. The results arising from the experiments are compared with the relevant ones known in the available bibliography.","PeriodicalId":359476,"journal":{"name":"Am. J. Comput. Math.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"A Fourth Order Improved Numerical Scheme for the Generalized Burgers - Huxley Equation\",\"authors\":\"A. G. Bratsos\",\"doi\":\"10.4236/ajcm.2011.13017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fourth order finite-difference scheme in a two-time level recurrence relation is proposed for the numerical solution of the generalized Burgers--Huxley equation. The resulting nonlinear system, which is analysed for stability, is solved using an improved predictor-corrector method. The efficiency of the proposed method is tested to the kink wave using both appropriate boundary values and conditions. The results arising from the experiments are compared with the relevant ones known in the available bibliography.\",\"PeriodicalId\":359476,\"journal\":{\"name\":\"Am. J. Comput. Math.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Am. J. Comput. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2011.13017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Am. J. Comput. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ajcm.2011.13017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

针对广义Burgers—Huxley方程的数值解,提出了两时间水平递推关系下的四阶有限差分格式。采用一种改进的预测校正方法对非线性系统进行了稳定性分析。采用适当的边界值和条件对扭结波进行了效率测试。实验结果与现有文献中已知的相关结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fourth Order Improved Numerical Scheme for the Generalized Burgers - Huxley Equation
A fourth order finite-difference scheme in a two-time level recurrence relation is proposed for the numerical solution of the generalized Burgers--Huxley equation. The resulting nonlinear system, which is analysed for stability, is solved using an improved predictor-corrector method. The efficiency of the proposed method is tested to the kink wave using both appropriate boundary values and conditions. The results arising from the experiments are compared with the relevant ones known in the available bibliography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信