用于12导联心电分类的宽深变压器神经网络

A. Natarajan, Yale Chang, S. Mariani, Asif Rahman, G. Boverman, S. Vij, J. Rubin
{"title":"用于12导联心电分类的宽深变压器神经网络","authors":"A. Natarajan, Yale Chang, S. Mariani, Asif Rahman, G. Boverman, S. Vij, J. Rubin","doi":"10.22489/CinC.2020.107","DOIUrl":null,"url":null,"abstract":"Cardiac abnormalities are a leading cause of death and their early diagnosis are of importance for providing timely interventions. The goal of 2020 PhysioNetlCinC challenge was to develop algorithms to diagnose multiple cardiac abnormalities using 12-lead ECG data. In this work, we develop a wide and deep transformer neural network to classify each 12-lead ECG sequence into 27 cardiac abnormality classes. Our approach combines handcrafted ECG features, which were determined to be important by a random forest model, and discriminative feature representations that are automatically learned from a transformer neural network. Our entry to the 2020 Phys-ioN etlCinC challenge placed 1st out of 41 official ranking teams (team name = prna). Using the official generalized weighted accuracy metric for evaluation, we achieved a validation score of 0.587 and top score of 0.533 on the full held-out test set.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"130 15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"A Wide and Deep Transformer Neural Network for 12-Lead ECG Classification\",\"authors\":\"A. Natarajan, Yale Chang, S. Mariani, Asif Rahman, G. Boverman, S. Vij, J. Rubin\",\"doi\":\"10.22489/CinC.2020.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac abnormalities are a leading cause of death and their early diagnosis are of importance for providing timely interventions. The goal of 2020 PhysioNetlCinC challenge was to develop algorithms to diagnose multiple cardiac abnormalities using 12-lead ECG data. In this work, we develop a wide and deep transformer neural network to classify each 12-lead ECG sequence into 27 cardiac abnormality classes. Our approach combines handcrafted ECG features, which were determined to be important by a random forest model, and discriminative feature representations that are automatically learned from a transformer neural network. Our entry to the 2020 Phys-ioN etlCinC challenge placed 1st out of 41 official ranking teams (team name = prna). Using the official generalized weighted accuracy metric for evaluation, we achieved a validation score of 0.587 and top score of 0.533 on the full held-out test set.\",\"PeriodicalId\":407282,\"journal\":{\"name\":\"2020 Computing in Cardiology\",\"volume\":\"130 15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Computing in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2020.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

心脏异常是导致死亡的主要原因,其早期诊断对于提供及时干预具有重要意义。2020年PhysioNetlCinC挑战赛的目标是开发使用12导联心电图数据诊断多发性心脏异常的算法。在这项工作中,我们开发了一个宽而深的变压器神经网络,将每个12导联心电图序列划分为27个心脏异常类别。我们的方法结合了手工制作的ECG特征,这些特征是由随机森林模型确定的重要特征,以及从变压器神经网络自动学习的判别特征表示。我们参加2020年物理离子电子挑战赛,在41个官方排名团队(团队名称= prna)中排名第一。使用官方的广义加权精度度量进行评估,我们在完整的测试集上获得了0.587的验证分数和0.533的最高分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Wide and Deep Transformer Neural Network for 12-Lead ECG Classification
Cardiac abnormalities are a leading cause of death and their early diagnosis are of importance for providing timely interventions. The goal of 2020 PhysioNetlCinC challenge was to develop algorithms to diagnose multiple cardiac abnormalities using 12-lead ECG data. In this work, we develop a wide and deep transformer neural network to classify each 12-lead ECG sequence into 27 cardiac abnormality classes. Our approach combines handcrafted ECG features, which were determined to be important by a random forest model, and discriminative feature representations that are automatically learned from a transformer neural network. Our entry to the 2020 Phys-ioN etlCinC challenge placed 1st out of 41 official ranking teams (team name = prna). Using the official generalized weighted accuracy metric for evaluation, we achieved a validation score of 0.587 and top score of 0.533 on the full held-out test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信