S. Gambs, M. Killijian, Izabela Moise, Miguel Núñez del Prado Cortez
{"title":"mapreduce GEPETO或对数百万移动痕迹进行隐私分析","authors":"S. Gambs, M. Killijian, Izabela Moise, Miguel Núñez del Prado Cortez","doi":"10.1109/IPDPSW.2013.180","DOIUrl":null,"url":null,"abstract":"GEPETO (for GEoPrivacy-Enhancing Toolkit) is a flexible software that can be used to visualize, sanitize, perform inference attacks and measure the utility of a particular geolocated dataset. The main objective of GEPETO is to enable a data curator (e.g., a company, a governmental agency or a data protection authority) to design, tune, experiment and evaluate various sanitization algorithms and inference attacks as well as visualizing the following results and evaluating the resulting trade-off between privacy and utility. In this paper, we propose to adopt the MapReduce paradigm in order to be able to perform a privacy analysis on large scale geolocated datasets composed of millions of mobility traces. More precisely, we design and implement a complete MapReduce-based approach to GEPETO. Most of the algorithms used to conduct an inference attack (such as sampling, kMeans and DJ-Cluster) represent good candidates to be abstracted in the MapReduce formalism. These algorithms have been implemented with Hadoop and evaluated on a real dataset. Preliminary results show that the MapReduced versions of the algorithms can efficiently handle millions of mobility traces.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"MapReducing GEPETO or Towards Conducting a Privacy Analysis on Millions of Mobility Traces\",\"authors\":\"S. Gambs, M. Killijian, Izabela Moise, Miguel Núñez del Prado Cortez\",\"doi\":\"10.1109/IPDPSW.2013.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GEPETO (for GEoPrivacy-Enhancing Toolkit) is a flexible software that can be used to visualize, sanitize, perform inference attacks and measure the utility of a particular geolocated dataset. The main objective of GEPETO is to enable a data curator (e.g., a company, a governmental agency or a data protection authority) to design, tune, experiment and evaluate various sanitization algorithms and inference attacks as well as visualizing the following results and evaluating the resulting trade-off between privacy and utility. In this paper, we propose to adopt the MapReduce paradigm in order to be able to perform a privacy analysis on large scale geolocated datasets composed of millions of mobility traces. More precisely, we design and implement a complete MapReduce-based approach to GEPETO. Most of the algorithms used to conduct an inference attack (such as sampling, kMeans and DJ-Cluster) represent good candidates to be abstracted in the MapReduce formalism. These algorithms have been implemented with Hadoop and evaluated on a real dataset. Preliminary results show that the MapReduced versions of the algorithms can efficiently handle millions of mobility traces.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MapReducing GEPETO or Towards Conducting a Privacy Analysis on Millions of Mobility Traces
GEPETO (for GEoPrivacy-Enhancing Toolkit) is a flexible software that can be used to visualize, sanitize, perform inference attacks and measure the utility of a particular geolocated dataset. The main objective of GEPETO is to enable a data curator (e.g., a company, a governmental agency or a data protection authority) to design, tune, experiment and evaluate various sanitization algorithms and inference attacks as well as visualizing the following results and evaluating the resulting trade-off between privacy and utility. In this paper, we propose to adopt the MapReduce paradigm in order to be able to perform a privacy analysis on large scale geolocated datasets composed of millions of mobility traces. More precisely, we design and implement a complete MapReduce-based approach to GEPETO. Most of the algorithms used to conduct an inference attack (such as sampling, kMeans and DJ-Cluster) represent good candidates to be abstracted in the MapReduce formalism. These algorithms have been implemented with Hadoop and evaluated on a real dataset. Preliminary results show that the MapReduced versions of the algorithms can efficiently handle millions of mobility traces.